
Notebook 4: A complete account of the Loglan
language as curated by Randall Holmes and
others starting in 2013 (draft in progress, see

version notes)

Randall Holmes (and maybe others)

May 20, 2023

Contents

0.1 Version Notes . 2

1 Introduction 3

2 Part I: Essays 8

3 Part II: Commentary on the PEG 9

1

0.1 Version Notes

5/10/2023: Starting.

5/20/2023: Added comments about the plan of the work to the introduc-
tion and embedded the current version of the PEG.

2

1 Introduction

I am sitting down in 2023, ten years after I (and others) started working on
the project of wholesale revision of the Loglan language as it was handed
down to us. I am setting out to write a self-contained account of where the
language is and both say and show why it is interesting to study and perhaps
use this intellectual construction.

Loglan is an artificial language, originally conceived by James Cooke
Brown in 1955. It was designed for a specific purpose, which to my knowledge
has never been carried out, and which is not really part of my aims for the
language (if I have any beyond contemplation). The intention was to support
an experimental test of the Sapir-Whorf hypothesis, that the language that
a human being speaks constrains the way that they think.

The way that this purpose drove the design of the language is described
by Brown (for example in the 1975 version of Loglan I) and in fact makes
good sense. In order to be useful for an experimental test of the Sapir-
Whorf hypothesis, the language needed to be small and easily learned (so that
experimental subjects could learn it and try thinking in it) and extremely
strange in some respect which could be engineered by the language designers
(so that a Whorfian effect could be expected if there are such effects).

Brown claimed to have experimental evidence that the language was easily
learned. I cannot evaluate this after the lapse of time and death of witnesses
to these experiments. I can report that I have rather slowly learned the
language: some aspects of it I think are indeed fairly easy to learn, and
others are deep and complicated.

The way in which Brown chose to make it strange was to make it ex-
tremely logical. This again made sense, as progress in mathematical logic
and computer programming meant that there was a good understanding of
what a logical language might be like. The language now exists, and I have
some rather dry remarks about the exact senses in which it is logical (though
it should be clear because I am writing this and directing the project that I
think the project has value and interest).

First of all, there is a pun inherent in the claim that Loglan is logical.
It is logical in three different ways which are not necessarily related to each
other.

It is to some extent designed to implement the machinery of first order
predicate logic in a spoken language. As we will detail in one of our essays,
it does not do this in any way that a logician would have chosen to do,

3

but it does do it to a considerable extent. We will note briefly here, as
an example (and a source of difficulty here and there) the structure of the
Loglan sentence. An atomic sentence has the form P (x1, . . . , xn) in logic,
where the P is the predicate (the verb, in this context) and the xi’s are
the arguments (noun phrases playing the grammatical roles of subject and
objects). In Loglan grammar, the default grammatical structure for such
a sentence is SVO (a very common natural language approach), and the
parse is (x1(P (x2, . . . , xn))). This gives the first argument (the subject) a
very special role (implicit in all Loglan work, more explicitly visible in our
grammar) and further has the weird effect that the predicate (the verb)
has the second and subsequent arguments (the objects) bound to it more
tightly than the subject is bound to it. In logical notation, the roles of the
arguments are exactly coordinate; not so in Loglan. This is an example of the
way Loglan differs from logical notation; it isn’t a criticism of the language
as such. It is also an example of something so deeply embedded in the design
of the language as it has come down to us that it would be hard to change it
without ripping everything up and starting afresh; as I will say many times,
my role is to curate an existing language, not to redesign it to make a better
one.

The language is unambiguously parsable by computer. This is a char-
acteristic of logical notations, but has nothing essential to do with the first
sense in which Loglan is logical. It is, further, unambiguously parsable by
computer (and one hopes by the human ear and brain) in two quite different
senses. Its phonetics and lexicography are unambiguous: in principle samples
of the the written and spoken forms of Loglan, if resolved successfully into
phonemes and pauses, should be unambiguously resolvable into “words” in a
general sense (with information about the lexical classes of these “words”).
Its grammar is unambiguous: a written or spoken sample of Loglan should
parse in just one way.

Loglan as it was handed down to us came with a parser (LIP) which
would parse sentences using a BNF grammar which was provably unambigu-
ous. The software used cues in words to classify them phonetically, but it
did not implement the official phonetic structure of the language fully and
moreover attempts to test the phonetics carefully revealed bugs. The sense
in which the BNF grammar was unambiguous was qualified. A method of
proving an LALR(1) grammar unambiguous was used. But Loglan grammar
is not LALR(1): a preprocessing step was needed. Both the failure to fully
implement the phonetics and the use of the preprocessor introduced ambigu-

4

ity into the language (and it was unsatisfactory that strenuous tests of some
language features led to parser crashes).

Loglan was actively developed from 1975 to 1983 (partly supported by
a government grant). This grant was not renewed and the project fell on
hard times. It was also decided to completely remodel the phonetics of
the 1975 version, which occasioned considerable work. In 1987, Notebook
3, a full account of all aspects of the language, was released, and in 1989
a new version of the book Loglan I was released, giving a baseline for “the
language as handed down to us” (along with computer based dictionaries: no
new paper dictionary was released along with the 1989 Loglan 1). Sometime
between 1983 and the release of Notebook 3, there was a schism in the project,
and a separate, closely related but not mutually intelligible language came
into being, which is called Lojban. I have no comments to make about
the language split; I may occasionally have things to say about Lojban as
a related language with related problems and opportunities. The Loglan
Institute is currently on good terms with the Logical Language Group.

The sources on which my work (with some collaboration from others) is
based are Loglan 1,4,5, the Loglan book and dictionaries released in 1975,
Notebook 3, the complete language description released in 1987, the trial.85
formal grammar on which LIP was built, the 1989 version of Loglan I, and the
computer dictionaries (online versions of Loglan 4 and 5). I have all issues of
the Loglanist periodical which was produced at intervals from the late 1970s
until 1983, and I have most issues of the periodical Lognet from the 80s and
90s, and Appendix H, which details changes to the Loglan described in 1989
which were made officially by the Loglan Academy of that time. I also have
Alex Leith’s novella A Visit to Loglandia and some other sample Loglan text.

I do not have a lot of things which a historian of the language would like
to have. I have very little documentary evidence of what went on from 1983
to 1989. I would like to gather such documentation if anyone has it. As I
said above, I am not interested in the politics of the language split. I am
deeply interested in any documentation of the process of language building
which still exists. My interest in this is historical rather than linguistic: I
view Notebook 3 as the base language description from which the versions
of 1989 and 2013+ spring, with the 1975 releases and the Loglanist volumes
as partial history of the background.

James Cooke Brown died in 2000 and Alex Leith, who succeeded him as
leader of the Loglan Institute, died shortly afterward, to be succeeded by
Robert McIvor, the main architect of the Loglan formal grammar. In 2008,

5

McIvor tapped me as “CEO” of the Loglan Institute (Brown’s choice of title,
not mine).

I had been the house logician in the 1990’s but resigned (without acri-
mony) when Brown declined advice of mine about the role of sets in the
language. I met Brown in person once and I corresponded with McIvor on
many occasions. Unfortunately, a lot of relevant email disappeared in the
collapse of Netscape (along with much of my early professional email).

In 2008 I became leader of the language (I certainly don’t regard myself
as owner: I don’t think a language can be owned), without really being
able to speak it. I did have a good understanding of the outlines of the
formal grammar and implementation of logic, hampered by the unsatisfactory
opacity of LIP. The old parser had unreadable internals (except for the BNF
grammar) and its output was unreadable (human beings cannot make good
use of parses which require matching many levels of nested parentheses).

From 2008 to the present I have met almost every week with a few people
in the virtual world Second Life to talk in and about Loglan. In this way, I
have acquired some ability to speak the language, mostly in text rather than
voice.

In 2013, I heard a rumor that someone had used PEG (Parsing Expres-
sion Grammar) machinery to parse Lojban from the level of letters up. I
decided to do this for Loglan. This required me to develop what I think was
the first formal parser for TLI Loglan phonetics (I think something at least
approximating this had already been done in Lojban), which at the same
time incorporated the grammar of Loglan as expressed in trial.85 (wth some
amendments).

This gave us a language definition which was for the first time fully ac-
cessible and testable at all levels.

This enabled me to address some major problems on the periphery of
the language definition which were already recognized as problems in the
1990’s. Notable instances are the problem of serial names and the problem
of acronyms. The original Loglan solution for strong quotation was not
implementable in BNF or PEG; I installed a different solution (which owes
something in its details to an earlier analysis of Linnaean names in the 90s by
other workers). There was a systematic problem with tense-suffixed logical
connectives (APA words) which required substantial work. A full solution to
the problem of the left boundaries of names was installed, which could only
be tested because the new grammar software handles phonetic, lexical, and
grammatical levels.

6

The main testbed for the grammar software has been parsing the entire
text of Alex Leith’s novel (twice), revising it as necessary for the new parser
to work. There are many changes in the text, mostly minor, and the whole
process gives evidence for the claim that 2013 Loglan, though different, would
be intelligible to a speaker of 1989 Loglan if there were such a being. And
that is my aim: I am engaged in making an existing language work, not in
redesigning it to be a better one. 2013 Loglan has some profound differences
in deep structure from 1989 Loglan, but the intention is to keep existing
text stable, and the differences would only come into play with much more
complex and extensive writing in the language.

The plan of this work is to have three parts: this Introduction (hopefully
succint), Part I, a collection of essays on aspects of the language on pho-
netic, lexicographic, and grammatical levels, and Part II, a point by point
commentary on the PEG grammar (yes, I know this is a pleonasm). The plan
for wriring it is to write Part II and allow it to motive the development of
the essays in Part I. I already have a fairly clean account of the phonetics of
the language, which I may write anew but which will surely closely resemble
what appears in the existing reference grammar. I want to write a similar
top down human accessible acount of the grammar: the current one in the
existing reference grammar is more like a point by point comment on points
in the PEG.

7

2 Part I: Essays

8

3 Part II: Commentary on the PEG

The text of the PEG follows, to be interspersed with formal commentary for
this document. The original text contains comments, which we may edit or
preserve as we work.

<H1>The Loglan PEG Grammar</H1>

 This document and other related Loglan materials are

intellectual property of the Loglan Institute, a Florida

corporation which still exists, but the Institute freely permits

and enourages the use of this and other Loglan materials for

noncommercial purposes.

<p>

<TT>

In this file I will develop the entire Loglan grammar on top of

the phonetic proposal

<H2> PEG notation </H2>

A PEG (Parsing Expression Grammar) is made up of lines of the

form

<TT> class_name <- PEG notation</TT>

Each PEG notation describes a set of strings with conditions on

the context in which they occur.<p>

Concrete strings: <TT>’string’</TT> or <TT>"string"</TT>

literally denotes the 6 character string given.<p>

Classes of characters: <TT>[aeiou]</TT> describes the set of

one character strings which are either

a, e, i, o, or u. Ranges can appear: <TT>[a-zA-z]</TT>

describes the union of the sets of lower case letters and upper

case letters, considered as one character strings.<p>

9

If <TT>A</TT> and <TT>B</TT> are PEG notations, <TT>(A B)</TT>

denotes a string of class <TT>A</TT> followed by a string of

class <TT>B</TT> (in which the string of class <TT>A</TT> is the

preferred string of this class read from the beginning of the

source string).<p>

If <TT>A</TT> and <TT>B</TT> are PEG notations, <TT>(A / B)</TT

> denotes a string of either class <TT>A</TT> or a string of

class <TT>B</TT>, with a string of class <TT>A</TT> being read

by preference if possible. The fact that a preference is

indicated in alternative lists makes PEG reading deterministic (

in a sense, there are no ambiguities for a PEG grammar). The

problem in a PEG corresponding to ambiguity in a BNF grammar is

incorrectly ordered lists of alternatives.<p>

If <TT>A</TT> is a PEG notation, <TT>(A)?</TT> represents a

string of class <TT>A</TT> (preferred) or an empty string if

there is no string of class <TT>A</TT>: this represents optional

appearance of <TT>A</TT>. <TT>(A)*</TT> represents zero or more

consecutive strings of class <TT>A</TT> (as many as possible)

and <TT>(A)+</TT> represents one or more consecutive such

strings.<p>

If <TT>A</TT> is a PEG notation, <TT>&(A)</TT> represents a

length 0 string which is followed by a string of class <TT>A</TT

>, and <TT>!(A)</TT> represents a length 0 string which is

not followed by a string of class <TT>A</TT>. This gives us

powerful lookahead features: for example, <TT>((A)! B</TT>

represents a string of class <TT>B</TT> whose beginning is not

also the beginning of a string of class

<TT>A</TT>: it is tempting but not accurate to say that it does

not have an initial segment of class <TT>A</TT>, because

detection of a string of class <TT>A</TT> longer than the string

of class <TT>B</TT> read would cause reading of this class to

fail.<p>

The period . represents the class of single characters (so !.

is end of text).<p>

10

New notations are introduced by lines <p>

<TT> class_name <- PEG notation</TT>:<p>

this is not just an abbreviation facility because such

definitions may be mutually recursive.<p>

A PEG notation applied to a source string will give either

failure or a uniquely determined initial string of the source (

parsed suitably); in a sense PEG is unambiguous. What

corresponds as an issue to ambiguity for a BNF grammar is

inappropriate choice of order of alternatives in PEG

disjunctions <TT>(A / B)</TT>: what often represents a problem

with a grammar is what I call "preemption",

where an earlier alternative reads an initial segment of a

string where a later alternative could have read more of it.<p>

It’s possible to have a PEG go into an infinite loop and fail

to produce a parse. My PEG generator has a termination checker,

so the Loglan grammar does not have these problems. I have

contemplated writing a preemption checker, but this is a rather

difficult problem.<p>

<p>

<H2>Dated updates now to appear here</H2>

<p>

 2/22/2022 Eliminated all use of ICI and ICA as binary

connectives between non-sentences. Non-sentence utterances

starting with ICA connectives remain and seem to be adequate for

all actual uses along these lines.

 2/20/2022 In addition, pulled the tightly binding ICI

connectives into sentence instead of utterance structure. I

doubt there is any practice in using them in their former role,

so they will be experienced as a new feature.

11

 2/19/2022 Major restructuring of sentences. Sentences with

head terms with gi and goi (uttAx) are moved into class sen1, so

they can be afterthought logically

connected like any other sentences. Note that the fact this

couldnt be done means that Loglan never really had OSV sentences

in any practical sense. The real reason I need this is

convenient isomorphism between Loglan and standard logical

notation. This means that class uttA0 is no longer needed (

removed in its one application in favor of sen1).

 experimentally allowing terms before keksents, which are in

effect headterms with [gio].

 2/15/2022 first public release with systematic renaming.

 work order 2/10/2022 no action taken yet. To go with [pau],

ago, add [fau] from now and [vau] distance away to class PA00. [

cioru] is rejected for cause.

 2/9/2022 added the [bao] lambda quantifier for constructing

abstract relations between more than two objects

 2/6/2022 removed kue from NI0 and added it (allowing digit

suffixes) to NU0.

<p>

<p>

 2/5/2022 fixed problem with CI as name marker created in

literal character cleanup; allowed [pi] to be prefixed to

anything of class NI

<p>

 2/2/2022 Large project: renaming of classes in the grammar.

Identify ones which ought to be known to speakers (targets for

having associated Loglan predicates). Establish standard

suffixes for phonemes, morphemes, lexemes. About done,

2/12/2022.

12

<p>

 2/2/2022 no modification yet. Small project: create class NUJI

with nuji and nuja, and correct grammar so NUJI takes only

arguments. At present, nuja is not supported and nuji can take

predicates and modifiers. Later: class NUJI installed and

properly restricted: nujiza and the like are not for the moment

supported.

<p>

 1/31/2022 removes a lot of use of literal characters by

defining rules sp and stress2. Corrects some minor errors in

literal character lists.

<p>

a note, not reflecting a modification. I’m wondering whether

the pause required in [fo tonira] ([fotonira] means something

quite

different) should be a mandatory comma pause. It looks as if it

might not be hard to implement.

<p> No modification as yet: I am thinking of banning JIO followed

by an imperative. JI should be used.

<p>

 fixed a bug which broke the end of speech marker "#"

#p$

 1/29/2022 Created wrapper classes so that parses which mix

letters and grammar classes are avoided.

<p>

13

 1/29/2022 Also fixed a small bug in class headterms. Fixed an

apparent bug in class NameWord ([hue] was omitted) which has

never caused any identifiable trouble.

<p>

 1/26/2022 complete elimination of the alternative parser and

all constituent rules (including the word [gaa]) as I have

abandoned this idea.

a note: there is a problem with interaction of quoted forms

with alien text operators.

<p>

 1/23/2022 made imperative important and cloned sentence and

uttAx in versions which will not be marked as imperative if they

lack subjects. Considering simply forbidding jio clauses to

contain no subject sentences, but this is not implemented (ji

should be used). Fixing the restriction on <ci> as a name marker

to allow it to be followed by whitespace and a name.

<p>

1/22/2022: provisionally removing the requirement that the

terms before the predicate in an SVO sentence contain no more

than one untagged argument.

The option of using the particle [gio] before any sutori

untagged arguments before the predicate remains.<p>

<p>

1/21/2022 Starting a literate programming exercise: turn this

document into HTML while preserving its performance as a PEG

grammar.

#Also note that the alternative version is now turned off. The only

component present is [gaa] and I do not see a reason for anyone

14

to use it.

#The alternative parser is readily turned back on by changing the

line statement1x. This version labels the default stressed

syllable in a predicate in the PhoneticComplex parse.

<p>

a serious problem with ICA, an actual ambiguity which has

existed since the beginning of the language,

hopefully fixed: the fix is that an apparent ICA initial

utterance which could without the period be

a continuation of a sentence is read as such. The important

point is that there is no audible difference

between comma followed by ICA and period followed by ICA: we

solve the problem by reading the latter

as the former where possible.

<p>

11/24/2021 KIA, the one "word" deletion operator, is installed.

What it actually does is a bit subtle.

<p>

2/4/2021 Imposed the rule that two final consonants cannot be

consonants from voiced/unvoiced pairs

with different voice. Also forbid second final consonant to be

h.

<p>

I have further fine-tuning of djifoa gluing in mind.

Allow the -r glue to be expressed as

15

-rr after all mandatory monosyllables, removing the annoying

pronunciation problem?

I was thinking of allowing -hy gluing in other contexts, but it

is actually a bad idea.

<p>

9/15/2019 installed semantic case tags with order distinctions

for use with predicates with more than one argument of the same

case.

one solution is beucine, beucito... another is beuzi, beuza,

beuzu.

<p>

4/28/2019 Various debugging of the new predicate algorithm.

Added CVVhy as a glued form for CVV djifoa.

added capitalization of djifoa glue! Confirming my apparent

earlier decision that a CVV(h)y djifoa must be followed

by a full predicate complex.

<p>

4/26/2019: this incorporates various revisions to the phonetics

, correcting errors or clarifying rules,

motivated by my development of the phonetics section of a new

grammar document. The one notable

change is that [ci] is now only a name marker if followed by an

explicit pause. This only requires

changes in writing in serial names. In speech, it is

recommended that one not pause after [ci]

16

except before a name word. The benefit is that non-serial-name

related uses of [ci] no longer

threaten mysterious needs to add explicit pauses before

following name words.

<p>

I want to add the [zao] proposal of John Cowan. Done,

4/15/2019. the imperative pronoun [koo] has been added though

not officially. I should also add [dao] for the dummy argument,

but not today (it is in as of 4/18)

<p>

#4/25 Making note of the idea that [ci] should not be a name marker

unless followed

by a pause. This would require that one pause before ci-marked

names and it would

remove some very confusing corrections for the false name

marker problem. If we

required the pause to be explicit we would be imposing the

expectation that whitespace

after [ci] is not a pause. Otherwise we could encourage writing

a juncture after [ci]

to deny presence of a pause, which is reasonable considering

the meanings of [ci].

I am implementing the version with explicit pauses between [ci]

and names

and the directive not to pause after [ci] without explicit

indication. This solution

17

involves rewriting existing text only in the rare instances

where [ci] precedes a name.

<p>

4/25/2019 Corrected some instances of (expanded) badstress. Now

forbidding (C)VVVV initial predicates. Probably I should use

class badstress systematically in defining cmapua.

<p>

4/24/2019 Final consonants in syllables cannot be followed by

syllabic continuants.

this rationalizes the definition of SyllableA.

<p>

4/22 I am thinking of explicitly flagging imperative sentences;

not changing

the grammar but making this visible in the parse. This might

also have some

effects on logical connections. 4/23 created an imperative

class for atomic

imperative sentences; this has no actual effect on parses, just

organizes them in a more enlightening way.

<p>

4/17-18 2019: updates commented out which make sentpred

linkable with forethought

and afterthought connectives (making some uses of [guu] to

share arguments

18

unnecessary). There are subtleties. Basically, untensed

predicates without

argument lists will be linked by A and KA series connectives.

Such a linked

set can be tensed as a whole. Such a linked set will share a

following termset.

This will probably change many parses in the Visit and other

legacy sources.

This required some really subtle adjustments to work right,

divinable from

the actual rules given. Definitely experimental.

<p>

3/9/2019 further, extended LIU1 to handle [ainoi] and its kin

(actual mod is to class Cmapua) Further, fixing mismatch

between connective and A classes. One does now have to pause

before [ha] and its compounds.

<p>

3/9/2019 repaired bugs in negative attitudinals. A pause

in a negative attitudinal of the [no, ui] form will not break

it. [ainoi] didnt work for two reasons: the clauses

in the definition of NOUI were in the wrong order, and

the connective class mistakenly included [noi] so the

phonetics checker was crashing! I had to move N and NOI

19

earlier to make this work. Not yet installed in the other

version.

<p>

1/26/2019 added [vie], JCB’s "objective subjunctive" as a PA

class word. I should add this to the other file as well.

<p>

12/22/18: just a comment: one does not have to pause before [ha

] and its compounds.

I do not know whether to fix this. One did not have to in LIP

either. For the moment I will

leave it as it is. As a matter of style, one probably should

pause.

<p>

10/6/18 minor adjustments, made only in this file. Allow [sujo]

(a wicked thing to say). Do not

allow [futo]: suffixed conversion operators must be nu + suffix

.

<p>

6/2 fixed LIO + alien text. I also fixed some other glitches

described in the reference grammar.

<p>

5/11 making version without "alternative parser" features. This

version allows GAA but it doesn’t

20

do anything: the definitions of argumentA and kin are the only

point of difference. Master version:

becomes "alternative" by reinstating alternative definitions of

argumentA and kin. Further, made changes

recommended in the reference grammar. ALTERNATIVE -- this is

actually my master version. Edit

this and revise the argumentA and kin entries to make the

original version.

<p>

4/24 discovered and repaired a bug re ci-marked names suffixed

to descriptions. Discovered a bug in numerical

descriptions yet to be fixed: [lio] needs to be an alien text

marker, maybe taking double quotes. The description-

with-suffixed-name bug was actually quite gruesome. I think it

is repaired.

<p>

4/23 streamlined definition of descriptn. Shouldn’t change

anything. It was remarkably tricky though; preserving the old

form

in case of further trouble.

<p>

4/22 I think this will be the master grammar file, with

alternative lines to turn off the

GAA-related features. (1/21/2022, they are now turned off)

<p>

21

4/22 allowing general predicates in gasent1. This removes an

extreme oddity in parsing of imperatives.

I do not see any new dangers from this.

<p>

4/22 I changed the final element of a keksent to be a sentence

(new class uttA0), not a general sentence fragment.

several parse errors in the Visit were uncovered by this.

<p>

4/22: note that I still have the obligation to restore the [zao

] construction.

<p>

4/9/2018 the large subject marker GAA can also be used to

defend the beginnings of gasents and imperatives

from absorbing trailing arguments into an unintended statement.

In this context [gaa] may be followed by [ga] ;-)

<p>

4/8/2018 this is an alternative version in which an argument

which starts an SVO sentence will not be accepted

as a trailing argument of a previous sentence. This allows neat

termination of [lepo] clauses preceding

a subject, for example. Unlike the previous alternative

approach, this seems to involve a single fairly

tidy change: it is all an issue of avoiding needs for explicit

closure. Further refinement: SVO sentences

22

can be marked with GAA (which is not a tense: it appears

optionally just before the predicate, or just

before sutori arguments marked with GIO if there are any), the

"large subject marker": an argument which

starts an SVO sentence *not marked with GAA* will not be

accepted as a trailing argument of a previous

sentence. This is a sufficiently complex grammar change that it

requires thought: it is not conservative

in my usual sense. The fact that GAA carries a mandatory stress

is virtuous. Its resemblance to the

particle GA when used as a tense is not a bad thing: it would

often be used instead of GA to close

a [lepo] clause appearing as a subject, and it is perhaps

better for that purpose. Note that GAA can

and often will be followed by a tense. This grammar change

depends strongly on the previous ruling that the O in

SOV(O) sentences must be marked with [gio]: S gio O^n V (O^m).

<p>

nuu is an atomic A core and there is no nu-affix to A

connectives and their kin

1/20/2018 redefined CA cores to include a possible NU prefix.

This allows more logically connected tenses, for example.

<p>

1/13/2018 reorganized the internals of class PA in a way which

should allow more things and not forbid anything legal now.

23

this is pursuant on an analysis of the classes NI and PA as

phrases, rather than words, as I start writing a global

lexicography

proposal document. Enforced explicit pauses after PA phrases

appearing as arguments with a following modifier with an

argument.

<p>

12/30/2017 fixed a problem with name markers in the clas

NameWord and made a slight change to the new option in NI (names

as dimensions).

<p>

12/27/2017 installing an alternative treatment of acronyms

under which they are simply names (suffix -n to acronyms in all

uses).

supporting this requires no change at all to acronymic name

usage (just use the -n versions with the usual rules for names),

and for dimension usage requires [mue] to be a name marker and

support for [mue] PreName as an alternative suffix to NI.

<p>

12/27/2017 Frivolously fooling with the capitalization

conventions. They ought to work better now...but I could have

broken something.

the main new idea was to require that a capitalized embedded

letteral actually be followed by lowercase if it was preceded by

lowercase

(with the obvious exception for a letteral followed by a

letteral). Also changed the rules for diphthongs in cmapua to

make all-caps

24

legal for cmapua. The general idea is that one can start with a

capital letter and stay capitalized until one hits a lower case

letter,

at which point one can jump back up to caps only at a juncture

(after which you can remain capitalized) or temporarily for a

vowel

after z- (after which lower case resumes) or an embedded

literal (after which lowercase resumes). The total effect is

that this allows

attested capitalization patterns in Loglan (including

capitalization of embedded literals as in possessive articles

and acronyms)

and also allows all-caps for individual words (attested in

Leith but suppressed in my version) and supports capitalization

of components

of names as in [la Beibi-Djein] (by artful use of syllable

breaks: Leith just has BeibiDjein, which does not work for me).

<p>

12/26/2017 Installed [niu] (quotation of phonetically legal but

so far non-Loglan words). I did not make [niu] a name marker,

so if one were to

use it with names (where it isn’t really appropriate), one

would have to pause initially: [niu, Djan].

<p>

I note in this connection that quotation of names with li...lu

remains limited, since names by themselves are not

utterances: one needs the [la]. I fixed this as an exception in

the previous parser; I may do it here or I may

25

not, haven’t decided. Single name words can be quoted with [liu

], of course, but not serial names.

<p>

12/24/2017 Refined treatment of vowel pairs for Cvv-V cmapua

units. First 12/24 version rather disastrously

broken: this should be fixed!

<p>

12/23/2017 This is now completely commented, with minor local

exceptions to which I will return later.

This document is the basis on which I will build all subsequent

parsers, with due modifications to the comments.

The Python PEG engine and preamble files contain commands for

constructinging a Python parser from it directly.

<p>

12/22/2017 major progress on commenting the grammar

<p>

yet later 12/20: no change in performance of the grammar,

extensive commenting in the

grammar section. Considerable changes in arrangement: for

example, vocatives, inverse vocatives,

and free modifiers are moved to a much earlier point. I’m

hoping to get a genuinely almost readable

commented grammar...

<p>

26

later 12/20 starting the process of commenting and editing the

grammar, starting

at basic sentence structures. Notably rewrote the class [

keksent] more compactly,

one hopes with no actual effect on parses.

<p>

12/20/2017 Do not require expression of pause after finally

stressed cmapua before

vowel initial predicate as a comma, since the initial vowel

signals the pause anyway.

Allow final stress in names. Fixed bug in CVVHiddenStress.

Prevented

broken monosyllables in finally stressed CVV djifoa. refinement

of caprule

<p>

12/19/2017 seem to have had a versioning failure and lost the

fix which requires

CVVy djifoa to be followed by complete complexes. Restored.

<p>

12/18/2017 fixed a bug in treatment of stressed syllables in

recognizing predicate starts. Also

narrowed the generalized VCCV rule to allow more of the quite

unlikely space of predicates with lots

of vowels before the CC pair. Probably they should be banned (

and none have ever been proposed with

27

more than three) but that rule is not the context in which to

arbitrarily ban half of them. Some cleanup

of the display of parses, for which updated version of

logicpreamble.py should also be uploaded. A refinement

to class "connective" checking that apparent logical

connectives are not initial segments of predicates.

This has the effect of delaying the declaration of "connective"

until after the declaration of

"predstart".

<p>

12/17/2017 further refinement of the 12/16 version: a couple of

bugs spotted.

<p>

12/16/2017 There should be no change in parsing behavior, but

the predstart ruleset is shorter

and more intelligible, and I realized that Complex doesnt need

a check for the anti-slinkui test

(the requirement that certain initial CVC cmapua be y hypenated

which replaces the slinkui test))

at all: the way predstart works already ensures that initial CV

cmapua fall off in the excluded

cases, the idea being that we test the front of a predicate

without lookahead in all cases. Also

addressed the subtle point that one wasn’t forced to pause

after a predicate before following y

28

(not likely to arise as a problem).

<p>

12/14/2017 Corrected vowel grouping to avoid paradoxical vowel

triples which are default

grouped in a way which becomes illegal if made explicit.

SyllableA really should contain a final

consonant: the previous form was messing up vowel grouping.

Serious bug where end of djifoa

and syllable resolution of a predicate may fail to agree. I

think I blocked this by ensuring that

final djifoa are not followed by vowels. Other fine tuning of

the complex algorithm. Also had

to repair the check for CVCCCV and CVCCVV predicates.

<p>

12/13/2017: added kie (utterance) kiu to class LiQuote. Did

fine tuning to ensure

that cmapua streams stop before [li] or [kie], that names can

stop at double quotes or close

parentheses, and that the capitalization rule ignores opening

parentheses as well as double

quotes. One can now adorn li lu with quotes (on the inside) in

a reasonable way

and adorn kie kiu with parentheses (on the inside) in a

reasonable way. One cannot

replace these words (or any words) with punctuation in my

model of Loglan. Also,

29

updates to comments, and (end of utterance) added as a

marker of terminal punctuation.

<p>

<H2>Comments on the initial release of this grammar</H2>

This is now done, in a first pass. That is, the grammar is

adapted and appears to work, more or less.

What is needed is comments on the lexicography and the grammar

...Phonetics has now pretty clearly been sorted

from the grammar (there are some places where the phonetics

accept grammar information with regard to punctuation).

<p>

Alien text is now handled somewhat differently. Some issues to

do with quoting names are not finalized and have not been tested

.

<p>

I added -iy and -uy as VV forms allowed in general in cmapua

but not in other words; they are always monosyllabic. What this

immediately allows me to do is to give Y a name which is not

phonetically irregular! [ziy] is supported: [yfi] is too, now.

<p>

capitalization is roughly back to where it was in the original,

but all-caps are allowed.

<p>

acronyms are liable to be horrible.

30

<p>

Fixed the recursion problem in a way which will not be visible

in ordinary parses. Streams of cmapua will always

be broken at name or alien text markers (instead of using

lookahead to check that we do not stand at the beginning

of a name word or alien text word). The next cycle will then

check for a name or alien text, and also check for

badnamemarkers; no lookahead is happening while a stream of

cmapua is being read except checking for

the markers of names and alien text. This will change the way

phonetic parses look (streams of cmapua will

break (and sometimes resume) at name markers or alien text

markers, but it will not change any grammatical

parses.

<p>

<H2> Rule name conventions. These should now be enforced.</H2>

<p>

 We define a way to sort rule names into layers, which an

automated tool ought to be able to use. <p>

 Phonemes: a rule name with one or two lower case letters

optionally followed by digits. <p>

 Intermediate phonetic and morphological groups: a rule name

whose first two characters are an uppercase and a lowercase

letter. This includes both classes of phonemes and classes of

strings of phonemes.<p>

31

 Lexemes (words, take this with a grain of salt): names made

entirely of uppercase letters. Note that names and alien text

constructions will tend to be treated as single words including

their markers.

 Lexeme-like: Names made of more than one uppercase followed by

lowercase letters are of lexeme-like things (name and alien

text markers).<p>

 Lexeme precursors: Names made of uppercase letters followed by

digits are precursors of lexeme classes. Cmapua components

which are true affixes will be labelled with such a class and

not with a lexeme class. The point here is that some of the

lexeme classes have internal grammar.<p>

 Grammar classes: Names starting with at least three lower case

letters (anything may follow) are grammar classes. Ones the

speaker should be aware of will not usually be followed by

digits. <p>

<p>

<p>

<H2>Part I Phonetics</H2>

Mod bugs, I have implemented all of Loglan phonetics as

described in my proposal. Borrowing djifoa are pretty tricky.

<p>

I have now parsed all the words in the dictionary, and all

single words of appropriate classes parse successfully.

I have added alien text and quotation constructions which do

not conform to these rules; so actually

all Loglan text should parse, mod some punctuation and

capitalization issues. The conventions for

32

alien text here are not the same as those in the current

provisional parser.

<p>

I believe the conventions for forcing comma pauses before vowel

initial cmapua and after names

except in special contexts have been enforced. In a full

grammar, one probably would want

to disable pauses before vowel initial letterals (done). This

grammar also does not support the lingering

irregularities in acronyms (and won’t).

<p>

This grammar (in Part I) is entirely about phonetics: all it

does is parse text into names (with associated initial

pauses or name markers), cmapua (qua unanalyzed streams of

cmapua units),

borrowings and complexes, along with interspersed comma pauses

and marks

of terminal punctuation. It does support conventions about

where commas are required

and a simple capitalization rule. Streams of cmapua break when

markers initial

in other forms are encountered (and may in some cases resume

when the markers

are a deception).

<p>

33

a likely locus for odd bugs is the group of predstartX rules

which detect apparent cmapua which

are actually preambles to predicates. These are tricky! (and I

did indeed find some lingering

problems when I parsed the dictionary). Another reason to watch

this rule predstart

is that it carries a lot of weight: !predstart is used as a

lightweight test

that what follows is a cmapua (a point discussed in more detail

later).

<p>

In reviewing this, I think that very little is different from

1990’s Loglan (the borrowing djifoa

are post-1989 L1, but not my creation). Some things add

precision without making anything in 1990’s Loglan incorrect.

The requirement that syllabic consonants be doubled is new, and

makes some 1990’s Loglan names incorrect.

The requirement that names resolve into syllables is new, and

makes some 1990’s Loglan names incorrect,

 usually because they end in three consonants.

The rule restricting final consonant pairs from being

noncontinuant/continuant is new, but

 does not affect any actual predicate ever proposed.

Enhancing the VccV rule to also forbid CVVV...ccV caused one

predicate to be changed

34

 ([haiukre] became [haiukrre], and haiukre was a novelty anyway

, using a new name for X in X-ray)

The exact definition of syllables and use of syllable breaks

and stress marks is new (the close comma

 was replaced with the hyphen, so Lo,is becomes Lo-is); but

this does not make anything in 1990’s Loglan

 incorrect, it merely increases precision and makes phonetic

transcript possible.

Forbidding doubled vowels in borrowings was new, was already

approved, and caused us to change

 [alkooli] to [alkoholi].

Formally allowing the CVccVV and CVcccV predicates without y-

hyphens took a proposal in 2013 because

 Appendix H was careless in describing their abandonment of the

slinkui test, but the dictionary

 makes it evident that this was their intent all along. The

slinkui test had already been

 abandoned in the 1990s.

Formally abandoning qwx was already something that the

dictionary workers in the 1990’s were working

 on; we completed it.

Allowing glottal stop in vowel pairs and forbidding it as an

allophone of pause is a new phonetic

 feature in the proposal but not reflected in the parser, of

course. Alternative pronunciations of

35

 y and h and allowing h in final position are invisible or do

not make any 1990’s Loglan incorrect.

Permitting false name markers in names was already afoot in the

1990’s and the basic outlines of our

 approach were already in place. The rule requiring explicit

pauses between a name marker not starting

 a name word and the beginning of the next name word is new,

but reflects something which was already

 a fact about 1990’s Loglan pronunciation: those pauses had to

be made in speech

(and in the 1990’s they had no tools to do relevant computer

tests)! The requirement

 that names resolve into syllables restricts which literal

occurrences of name markers are actually

 false name markers (the tail they induce in the name must

itself resolve into syllables).

Working out the full details of borrowing djifoa was

interesting: I’m not sure that I’ve done anything

 new there; explicitly noting the stress shift in borrowing

djifoa might be viewed as something

 new but it is a logical consequence of JCB’s permission to

pause after a borrowing djifoa, which contains

 explicit language about how it is to be stressed, and the

 final definition of a borrowing djifoa as simply a borrowing

followed by -y. The shift strikes

 me as a really good idea anyway, because it marks djifoa with

a pause after it as phonetically different

36

 in an additional way other than ending with the very

indistinct vowel y. My rules as given here do not

 directly enforce the rule that a borrowing djifoa must be

preceded by y but I think they indirectly

 enforce it in all or almost all cases: the parser tries to

read a borrowing djifoa before reading

 any other kind of djifoa, so it is hard to see how to deploy a

short djifoa in such a way that it would

 fall off the head of a borrowing without using y.

These phonetics do not support certain irregularities in

acronyms. We note that

it is now allowed to insert [, mue] into an acronym, which

would be necessary for example

between a Ceo letteral and a following VCV letteral.

<p>

<H3>Sounds</H3>

<p>

 the sound of silence

<p>

sp <- []+

<H4>Vowels</H4>

<p>

#all vowels

37

<p>

Vo1 <- [aeiouyAEIOUY]

<p>

#regular vowels

<p>

Vo2 <- [aeiouAEIOU]

<H3>Consonants</H3>

<p>

#consonants

<p>

Co1 <- [bcdfghjklmnprstvzBCDFGHJKLMNPRSTVZ]

<p>

#consonants in voiced/unvoiced pairs

<p>

Cvoiced <- [bdgjvzBDGJVZ]

<p>

Cunvoiced <- [ptkcfsPTKCFS]

<p>

bad voice pair (or pair second term of which is h)

forbidden as pairs of final consonants

38

<p>

Badvoice <- ((Cvoiced (Cunvoiced/[Hh]))/(Cunvoiced (Cvoiced/[Hh])))

<p>

<H4>Letters and capitalization</H4>

letters

<p>

Letter <- (![qwxQWX] [a-zA-Z])

<p>

a capitalization convention which allows what our current one

allows and also allows all-caps.

if case goes down from upper case to lower case, it can only go

back up in certain cases. This

does allow capitalization of initial segments of words. There

is a forward reference to the grammar

in that free capitalization of embedded literals is permitted,

and capitalization of vowels

guarded with z in literals as in DaiNaizA.

<p>

Lowercase <- (![qwx] [a-z])

<p>

Uppercase <- (![QWX] [A-Z])

<p>

39

caprule <- ([\"(]? &(([z] Vo1 (!Uppercase/&TAI0))/(Lowercase TAI0

(!Uppercase/&TAI0))/(!(Lowercase Uppercase) .)) Letter (&(([z]

Vo1 (!Uppercase/&TAI0))/(Lowercase TAI0 (!Uppercase/&TAI0))/(!(

Lowercase Uppercase) .)) (Letter/Juncture))* !(Letter/Juncture))

<p>

<H4>Junctures: syllable breaks and stresses</H4>

syllable markers: the hyphen is always medial so must be

followed by a letter.

the stress marks can be syllable final and word final. A

juncture is never followed

by another juncture.

<p>

Stress2 <- [\’*]

<p>

Juncture <- ((([-] &Letter)/Stress2) !Juncture)

<p>

Stress <- ([\’*] !Juncture)

<H4>Terminal punctuations and general characters</H4>

terminal punctuation

<p>

Terminal <- [.:?!;#]

<p>

40

characters which can occur in words

<p>

Character <- (Letter/Juncture)

<p>

<H3>Alien text</H3>

to really get all Loglan text, we should add the alien text

constructions and the markers of alien text,

[lie], [lao], [sao], [sue] and certain quotations which violate

the phonetic rules.

<p>

we adopt the convention that all alien text may be but does not

have to be enclosed in quotes.

it needs to be understood that in quoted alien text, whitespace

is understood as [, y,]; in the unquoted

version this is shown explicitly. This handling of alien text

is taken from the final 1990’s treatment

of Linnaeans = foreign names, and extended by us to replace the

impossible treatment of strong

quotation in 1989 Loglan.

<p>

this is a little different from what is allowed in the previous

provisional parser, but similar.

A difference is that all the alien text markers are allowed to

be followed by the same sorts of alien text.

41

<p>

the forms with [hoi] and [hue] are required to have following

quotes in written form to avoid

unintended parses, which otherwise become likely in case of

typos in non-alien text cases.

<p>

AlienText <- (([,]? sp [\"] (![\"] .)+ [\"])/([,]? sp (![,] !

Terminal .)+ ([,]? sp [Yy] [,]? sp (![,] !Terminal .)+)*))

 adding wrapper classes for alien text markers

<p>

HOIalien <- ([Hh] [Oo] [Ii])

<p>

HUEalien <- ([Hh] [Uu] Juncture? [Ee])

<p>

LIEalien <- ([Ll] [Ii] Juncture? [Ee])

<p>

LAOalien <- ([Ll] [Aa] [Oo])

<p>

LIOalien <- ([Ll] [Ii] Juncture? [Oo])

<p>

SAOalien <- ([Ss] [Aa] [Oo])

<p>

42

SUEalien <- ([Ss] [Uu] Juncture? [Ee])

<p>

AlienWord <- (&caprule ((HOIalien Juncture? &([,]? sp [\"]))/(

HUEalien Juncture? &([,]? sp [\"]))/(LIEalien Juncture?)/(

LAOalien Juncture?)/(LIOalien Juncture?)/(SAOalien Juncture?)/(

SUEalien Juncture?)) AlienText)

<p>

while reading streams of cmapua, the parser will watch for the

markers of alien text.

<p>

Alienmarker <- ((([Hh] [Oo] [Ii] Juncture? &([,]? sp [\"]))/([Hh] [

Uu] Juncture? [Ee] Juncture? &([,]? sp [\"]))/([Ll] [Ii]

Juncture? [Ee] Juncture?)/([Ll] [Aa] [Oo] Juncture?)/([Ll] [Ii]

Juncture? [Oo] Juncture?)/([Ss] [Aa] [Oo] Juncture?)/([Ss] [Uu]

Juncture? [Ee] Juncture?)) !Vo1)

<p>

5/11/18 added [lio] as an alien text marker, to support

numerals.

<p>

the continuant consonants and the syllabic pairs they can form

<H3>Complex Vowel Forms</H3>

Continuant <- [mnlrMNLR]

<p>

Syllabic <- (([mM] [mM] !(Juncture? [mM]))/([nN] [nN] !(Juncture? [

nN]))/([rR] [rR] !(Juncture? [rR]))/([lL] [lL] !(Juncture? [lL])

43

))

<p>

the obligatory monosyllables, and these syllables when broken

by a usually bad syllable juncture.

The i-final forms are not obligatory mono when followed by

another i.

<p>

MustMono <- (([aeoAEO] [iI] ![iI])/([aA] [oO]))

<p>

BrokenMono <- (([aeoAEO] Juncture [iI] ![iI])/([aA] Juncture [oO]))

<p>

the obligatory and optional monosyllables. Sequences of three

of the same letter

are averted. Avoid formation of doubled i or u after ui or ui.

<p>

Mono <- (MustMono/([iI] !([uU] [uU]) Vo2)/([uU] !([iI] [iI]) Vo2))

<p>

vowel pairs of the form found in cmapua and djifoa.

(other than the special IY, UY covered in the cmapua rules)

<p>

The mysterious prohibition controls a permitted phonetic

exception in djifoa gluing.

44

compua are never followed directly by vocalic continuants in

any case.

<p>

Vv <- (!(!MustMono Vo2 Juncture? Vo2 Juncture? [Rr] [Rr]) (!

BrokenMono Vo2 Juncture? Vo2))

<p>

the next vocalic unit to be chosen from a stream of vowels

in a predicate or name. This is different than in our Sources

and formally described in the proposal.

<p>

NextVowels <- (MustMono/(Vo2 &MustMono)/Mono/(!([Ii] Juncture [Ii]

Vo1) !([Uu] Juncture [Uu] Vo1) Vo2))

<p>

5/11/18 forbidding consonantal vowels to follow the same vowel.

<p>

the doubled vowels that trigger the rule that one of them must

be stressed

<p>

DoubleVowel <- (([aA] Juncture? [aA])/([eE] Juncture? [eE])/([oO]

Juncture? [oO])/([iI] Juncture [iI])/([uU] Juncture [uU])/([iI]

[Ii] &[iI])/([Uu] [uU] &[uU]))

<p>

the mandatory "vowel" component of a syllable

45

<p>

Vocalic <- (NextVowels/Syllabic/[Yy])

<p>

<H3>Complex Consonant Forms</H3>

<p>

the permissible initial pairs of consonants, and the same pairs

possibly

broken by syllable junctures.

<p>

Initial <- (([Bb] [Ll])/([Bb] [Rr])/([Cc] [Kk])/([Cc] [Ll])/([Cc] [

Mm])/([Cc] [Nn])/([Cc] [Pp])/([Cc] [Rr])/([Cc] [Tt])/([Dd] [Jj])

/([Dd] [Rr])/([Dd] [Zz])/([Ff] [Ll])/([Ff] [Rr])/([Gg] [Ll])/([

Gg] [Rr])/([Jj] [Mm])/([Kk] [Ll])/([Kk] [Rr])/([Mm] [Rr])/([Pp]

[Ll])/([Pp] [Rr])/([Ss] [Kk])/([Ss] [Ll])/([Ss] [Mm])/([Ss] [Nn

])/([Ss] [Pp])/([Ss] [Rr])/([Ss] [Tt])/([Ss] [Vv])/([Tt] [Cc])

/([Tt] [Rr])/([Tt] [Ss])/([Vv] [Ll])/([Vv] [Rr])/([Zz] [Bb])/([

Zz] [Ll])/([Zz] [Vv]))

<p>

MaybeInitial <- (([Bb] Juncture? [Ll])/([Bb] Juncture? [Rr])/([Cc]

Juncture? [Kk])/([Cc] Juncture? [Ll])/([Cc] Juncture? [Mm])/([Cc

] Juncture? [Nn])/([Cc] Juncture? [Pp])/([Cc] Juncture? [Rr])/([

Cc] Juncture? [Tt])/([Dd] Juncture? [Jj])/([Dd] Juncture? [Rr])

/([Dd] Juncture? [Zz])/([Ff] Juncture? [Ll])/([Ff] Juncture? [Rr

])/([Gg] Juncture? [Ll])/([Gg] Juncture? [Rr])/([Jj] Juncture? [

Mm])/([Kk] Juncture? [Ll])/([Kk] Juncture? [Rr])/([Mm] Juncture?

[Rr])/([Pp] Juncture? [Ll])/([Pp] Juncture? [Rr])/([Ss]

Juncture? [Kk])/([Ss] Juncture? [Ll])/([Ss] Juncture? [Mm])/([Ss

] Juncture? [Nn])/([Ss] Juncture? [Pp])/([Ss] Juncture? [Rr])/([

Ss] Juncture? [Tt])/([Ss] Juncture? [Vv])/([Tt] Juncture? [Cc])

/([Tt] Juncture? [Rr])/([Tt] Juncture? [Ss])/([Vv] Juncture? [Ll

46

])/([Vv] Juncture? [Rr])/([Zz] Juncture? [Bb])/([Zz] Juncture? [

Ll])/([Zz] Juncture? [Vv]))

<p>

the permissible initial consonant groups in a syllable.

Adjacent consonants should be initial pairs.

The group should not overlap a syllabic pair. Such a group is

of course followed by a vocalic unit.

<p>

this rule for initial consonant groups is stated in NB3.

<p>

I forbid a three-consonant initial group to be followed by a

syllabic pair. This seems obvious.

<p>

InitialConsonants <- ((!Syllabic Co1 &Vocalic)/(!(Co1 Syllabic)

Initial &Vocalic)/(&Initial Co1 !(Co1 Syllabic) Initial !

Syllabic &Vocalic))

<p>

the forbidden medial pairs and triples. These are forbidden

regardless of placement

of syllable breaks.

<p>

each of these is actually a single consonant followed by an

initial, and the idea was to identify CVC-CCV junctions which

would be hard to pronounce. But the placement of the syllable

break is not relevant to the exclusion of the sequence.

47

Notice that the continuant syllabic pairs are excluded: this

prevents final consonants from being included in such pairs.

<p>

NoMedial2 <- (([Bb] Juncture? [Bb])/([Cc] Juncture? [Cc])/([Dd]

Juncture? [Dd])/([Ff] Juncture? [Ff])/([Gg] Juncture? [Gg])/([Hh

] Juncture? Co1)/([Jj] Juncture? [Jj])/([Kk] Juncture? [Kk])/([

Ll] Juncture? [Ll])/([Mm] Juncture? [Mm])/([Nn] Juncture? [Nn])

/([Pp] Juncture? [Pp])/([Rr] Juncture? [Rr])/([Ss] Juncture? [Ss

])/([Tt] Juncture? [Tt])/([Vv] Juncture? [Vv])/([Zz] Juncture? [

Zz])/([CJSZcjsz] Juncture? [CJSZcjsz])/([Ff] Juncture? [Vv])/([

Kk] Juncture? [Gg])/([Pp] Juncture? [Bb])/([Tt] Juncture? [Dd])

/([FKPTfkpt] Juncture? [JZjz])/([Bb] Juncture? [Jj])/([Ss]

Juncture? [Bb]))

<p>

NoMedial3 <- (([Cc] Juncture? [Dd] Juncture? [Zz])/([Cc] Juncture?

[Vv] Juncture? [Ll])/([Nn] Juncture? [Dd] Juncture? [Jj])/([Nn]

Juncture? [Dd] Juncture? [Zz])/([Dd] Juncture? [Cc] Juncture? [

Mm])/([Dd] Juncture? [Cc] Juncture? [Tt])/([Dd] Juncture? [Tt]

Juncture? [Ss])/([Pp] Juncture? [Dd] Juncture? [Zz])/([Gg]

Juncture? [Tt] Juncture? [Ss])/([Gg] Juncture? [Zz] Juncture? [

Bb])/([Ss] Juncture? [Vv] Juncture? [Ll])/([Jj] Juncture? [Dd]

Juncture? [Jj])/([Jj] Juncture? [Tt] Juncture? [Cc])/([Jj]

Juncture? [Tt] Juncture? [Ss])/([Jj] Juncture? [Vv] Juncture? [

Rr])/([Tt] Juncture? [Vv] Juncture? [Ll])/([Kk] Juncture? [Dd]

Juncture? [Zz])/([Vv] Juncture? [Tt] Juncture? [Ss])/([Mm]

Juncture? [Zz] Juncture? [Bb]))

<p>

<H3>The Syllable</H3>

there are no formal rules about syllables as such in our

Sources, which is odd since

48

the definition of predicates depends on the placement of

stresses on syllables.

<p>

The first rule enforces the special point needed in complexes

that

a CVC syllable is preferred to a CV syllable where possible; we

economically apply

the same rule for default placement of syllable breaks

everywhere, which is, with

that exception, that the break comes as soon as possible.

<p>

the SyllableB approach is taken if the following syllable would

otherwise start with a syllabic pair.

<p>

the reason for this approach is that if one syllabizes a well

formed complex in this way...

the syllable breaks magically fall on the djifoa boundaries.

This does mean that the

default break in [cabro] is [cab-ro], which feels funny but is

harmless. Explicitly breaking

it [ca-bro] will also parse correctly.

<p>

SyllableA <- (Co1 Vo2 FinalConsonant (!Syllable FinalConsonant)?)

<p>

49

SyllableB <- (InitialConsonants? Vocalic (!Syllable FinalConsonant)

? (!Syllable FinalConsonant)?)

<p>

Syllable <- ((SyllableA/SyllableB) Juncture?)

<p>

The final consonant in a syllable. There may be one or two

final consonants. A pair of final

consonants may not be a non-continuant followed by a continuant

. A final consonant may not

start a forbidden medial pair or triple.

<p>

The rule that a final consonant pair may not be a non-

continuant followed by a continuant

is natural and obvious but not in our Sources. Such a pair of

consonants would seem to

naturally form another syllable.

<p>

a pair of final consonants cannot be differently voiced

<p>

FinalConsonant <- (!Syllabic !(&Badvoice Co1 !Syllable) (!(!

Continuant Co1 !Syllable Continuant) !NoMedial2 !NoMedial3 Co1

!(Juncture? (Vo2/Syllabic))))

<p>

50

#!((!MaybeInitial)C1 juncture? !syllabic C1 juncture? !syllabic C1)

!(&MaybeInitial C1 juncture C1 !(juncture? C1))

<H4>Varieties of Syllable</H4>

Here are various flavors of syllable we may need.

<p>

this is a portmanteau definition of a bad syllable (the sort

not allowed in a borrowing).

<p>

SyllableD <- (&(InitialConsonants? ([Yy]/DoubleVowel/BrokenMono/(&

Mono Vo2 DoubleVowel)/(!MustMono &Mono Vo2 BrokenMono)))

Syllable)

<p>

this (below) is the kind of syllable which can exist in a

borrowed predicate:

it cannot start with a continuant pair, it cannot have a y as

vocalic unit,

and its vocalic unit (whether it has one or two regular vowels)

cannot be involved in a double vowel or an explicitly broken

mandatory monosyllable.

<p>

BorrowingSyllable <- (!Syllabic !SyllableD Syllable)

<p>

this is the final syllable of a predicate. It cannot be

followed

51

without pause by a regular vowel.

<p>

VowelFinal <- (InitialConsonants? Vocalic Juncture? !Vo2)

<p>

syllables with syllabic consonant vocalic units

this class is only used in borrowings, and we *could*

reasonably

require it to be followed by a vowel. But I won’t for now.

for gluing this restriction would work, but we might literally

borrow predicates

with syllabic continuant pronunciations.

<p>

SyllableC <- (&(InitialConsonants? Syllabic) Syllable)

<p>

syllables with y

<p>

SyllableY <- (&(InitialConsonants? [Yy]) Syllable)

<p>

an explicitly stressed syllable.

<p>

StressedSyllable <- ((SyllableA/SyllableB) Stress2)

52

<p>

<H3>Name Words</H3>

a final syllable in a word, ending in a consonant.

<p>

NameEndSyllable <- (InitialConsonants? (Syllabic/(Vocalic &

FinalConsonant)) FinalConsonant? FinalConsonant? Stress? !Letter

)

<p>

<H4>The Pause</H4>

the pause classes actually hang on the letter before the pause.

<p>

whitespace which might or might not be a pause.

<p>

Maybepause <- (Vo1 Stress2? sp Co1)

<p>

explicit pauses: these are whitespace before a vowel or after a

consonant, or comma marked pauses.

<p>

Explicitpause <- ((Co1 Stress2? sp &Letter)/(Letter Stress2? sp &

Vo1)/(Letter Stress2? [,] sp &Letter))

<p>

<H4>The full analysis of names</H4>

53

these are final syllables in words followed by whitespace which

might not be a pause.

the definition actually doesnt mention the maybepause class.

<p>

MaybePauseSyllable <- (InitialConsonants? Vocalic Stress2? &(sp &

Co1))

<p>

a name word (without initial marking) is resolvable into

syllables and ends with a consonant.

<p>

PRENAME <- ((Syllable &Syllable)* NameEndSyllable)

<p>

this is a busted name word with whitespace in it -- but not

whitespace at which one has to pause.

<p>

BadPreName <- (((MaybePauseSyllable sp)/(Syllable &Syllable))*

NameEndSyllable)

<p>

This is a name marker followed by a consonant initial name word

without pause.

<p>

I deployed a minimal set of name marker words; I can add the

others whenever.

54

I have decided (see below) to retain the social lubrication

words as vocative markers

without making them name markers, so one must pause [Loi,

Djan]. By not allowing

freemods right after vocative markers in the vocative rule, I

make [Loi hoi Djan] work as well,

without pause.

<p>

MarkedName <- &caprule ((([Ll] !pause [Aa] juncture?)/ ([Hh] [

Oo] !pause [Ii] juncture?) / ([Hh] [Uu] juncture? !pause [Ee]

juncture?) / ([Cc] !pause [Ii] juncture?)/([Ll] [Ii] juncture? !

pause [Uu] juncture?)/[Gg][Aa] !pause [Oo] juncture?/[Mm][Uu]

juncture? !pause [Ee] juncture?) sp? &C1 &caprule PreName)

<p>

 adding wrapper classes for name markers

<p>

LAname <- ([Ll] [Aa])

<p>

HOIname <- ([Hh] [Oo] [Ii])

<p>

CIname <- ([Cc] [Ii])

<p>

LIUname <- ([Ll] [Ii] Juncture? [Uu])

<p>

55

MUEname <- ([Mm] [Uu] Juncture? [Ee])

<p>

GAOname <- ([Gg] [Aa] [Oo])

<p>

HUEname <- ([Hh] [Uu] Juncture? [Ee])

<p>

 second series is for marked names, no pauses after them

<p>

LAname2 <- ([Ll] !Explicitpause [Aa])

<p>

HOIname2 <- ([Hh] [Oo] !Explicitpause [Ii])

<p>

LIUname2 <- ([Ll] [Ii] Juncture? !Explicitpause [Uu])

<p>

MUEname2 <- ([Mm] [Uu] Juncture? !Explicitpause [Ee])

<p>

GAOname2 <- ([Gg] [Aa] !Explicitpause [Oo])

<p>

HUEname2 <- ([Hh] [Uu] Juncture? !Explicitpause [Ee])

<p>

56

MarkedName <- (&caprule ((LAname2 Juncture?)/(HOIname2 Juncture?)/(

HUEname2 Juncture?)/(LIUname2 Juncture?)/(GAOname2 Juncture?)/(

MUEname2 Juncture?)) sp? &Co1 &caprule PRENAME)

<p>

This is an unmarked name word with a false name marker in it.

<p>

FalseMarked <- (&PRENAME (!MarkedName Character)* MarkedName)

<p>

This is the full definition of name words. These are either

marked consonant initial names without pause defined above,

names without false name markers beginning with explicit pauses

(either comma marked or vowel-initial)

and name markers followed, with or without pause, by name words

. In the latter case there must be at least

whitespace before a vowel initial name.

<p>

a series of names without false name markers and names marked

with ci, separated by spaces, may be appended.

<p>

there is a look ahead at the grammar: a NameWord can be

followed without explicit pause (there is whitespace and

a pause in speech!) by another

kind of utterance only in a serial name when what follows is of

the form [ci] predunit, to be included

57

in the name.

<p>

NAMEWORD <- (((&caprule MarkedName)/([,] sp !FalseMarked &caprule

PRENAME)/(&Vo1 !FalseMarked &caprule PRENAME)/(&caprule (((

LAname Juncture?)/(HOIname Juncture?)/(HUEname Juncture?)/(

CIname Juncture? &([,]? sp))/(LIUname Juncture?)/(MUEname

Juncture?)/(GAOname Juncture?)) !Vo1 [,]? sp? &caprule PRENAME))

) (([,]? sp !FalseMarked &caprule PRENAME)/([,]? sp &([Cc] [Ii])

NAMEWORD))* &((sp? [Cc] [Ii] predunit)/(&(([,] sp)/Terminal

/[\")]/!.) .)/!.))

<p>

this is the minimal set of name marker words we are using. We

may add more.

<p>

I am contemplating adding the words of social lubrication as

name markers, but in a more restricted

way that in the last provisional parser, in which I made them

full-fledged vocative markers. [Actually,

I preserved their status as vocative markers without restoring

their status as name markers, in the latest version].

<p>

adding [mue] as a name marker

<p>

Namemarker <- ((([Ll] [Aa] Juncture?)/([Hh] [Oo] [Ii] Juncture?)/([

Hh] [Uu] Juncture? [Ee] Juncture?)/([Cc] &(Explicitpause/([Ii]

Juncture? sp PRENAME)) [Ii] Juncture?)/([Ll] [Ii] Juncture? [Uu]

Juncture?)/([Gg] [Aa] [Oo] Juncture?)/([Mm] [Uu] Juncture? [Ee]

58

Juncture?)) !Vo1)

<p>

this is the bad name marker phenomenon that needs to be

excluded. This captures the idea

that what follows the name could be pronounced without pause as

a name word according to the

orthography, but the fact that whitespace is present shows that

this is not the intention.

<p>

it is worth noting that name markers at heads of name words

pass this test

(because I omitted the test that what follows is not a PreName

in the interests

of minimizing lookahead);

but this test is only applied to strings that have already been

determined not to

be of class NameWord.

<p>

Badnamemarker <- (Namemarker !Vo1 [,]? sp? BadPreName)

we test for the bad name marker condition at the beginning of

each stream of cmapua,

and streams of cmapua stop before name markers (and may resume

at a name marker

if neither a NameWord nor the bad marker condition is found).

59

<p>

We have at any rate completely solved the phonetic problem of

names and their markers.

<p>

<H3>Predicate Start Test</H3>

predicate start tests: the idea is the same as class "

connective" below, to recognize

the start of a predicate without recursive appeals to the whole

nasty definition of predicate.

The reason to do it is to recognize when CV^n followed by CC

cannot be a cmapua unit.

<p>

New implementation 4/28/2019. This allows only (C)V(V)(V)

before the pair of vowels, for much less

potential lookahead.

<p>

Vthree <- ((Vo2 Juncture?) (Vo2 Juncture?) (Vo2 Juncture?))

<p>

Vfour <- ((Vo2 Juncture?) (Vo2 Juncture?) (Vo2 Juncture?) (Vo2

Juncture?))

<p>

predicate starting with two or three consonants: rules out CC(C

)V(V) forms. Junctures in

the initial consonant group ignored.

60

<p>

Predstart1 <- (((&MaybeInitial Co1 Juncture? MaybeInitial)/

MaybeInitial) &Vo2 !(Vo2 Stress !Mono Vo2) !(Vo2 Juncture? Vo2 !

Character) !(Vo2 Juncture? !Character))

<p>

an apparent cmapua unit followed by a consonant group which

cannot start a predicate -- CV(V) case

<p>

Predstart2 <- (Co1 Vo2 Juncture? (Vo2 Juncture?)? !Predstart1 Co1

Juncture? Co1)

<p>

a stressed CV^n before a consonant group (CV(V) case)

<p>

Predstart3 <- (Co1 !Vthree (!StressedSyllable Vo2 Juncture?)? &

StressedSyllable Vo2 Vo2? Juncture? Co1 Juncture? Co1)

<p>

other (C)V^n followed by nonpredicate

<p>

Predstart4 <- (Co1? Vo2 Juncture? (Vo2 Juncture?)? (Vo2 Juncture?)?

!Predstart1 !(MaybeInitial Vo2) Co1 Juncture? Co1)

<p>

other stressed (C)V^n followed by consonant group

<p>

61

Predstart5 <- (Co1? !Vfour (!StressedSyllable Vo2 Juncture?)? (!

StressedSyllable Vo2 Juncture?)? &StressedSyllable Vo2 Vo2?

Juncture? !(MaybeInitial Vo2) Co1 Juncture? Co1)

<p>

forms with y; implemented CVVhy alternative for CVV cmapua

<p>

Predstart6 <- (Co1 (Vo2 Juncture?) ((Vo2 Juncture? [Hh]?)/(Co1

Juncture? (Co1 Juncture?)?)) [Yy])

<p>

Predstart <- (Predstart1/Predstart2/Predstart3/Predstart4/

Predstart5/Predstart6)

<p>

it is worth noting that in the sequel we have systematically

replaced tests &Cmapua

with !predstart. The former involves lots of lookahead and was

causing recursion crashes

in Python. The phonetics and the grammar are both structured so

that any string

starting with a name marker is tested for NameWord-hood before

it is tested for

cmapua-hood; the only thing it is tested for later is predicate

-hood, and predstart

is a rough and ready test that something might be a predicate (

and at any rate

cannot be a cmapua).

62

<p>

<H3>Structure Word Phonetics</H3>

this class requires pauses before it, after all the phonetic

word classes.

what is being recognized is the beginning of a logical

connective.

<p>

To avoid horrible recursion problems, giving this a concrete

phonetic definition

without much lookahead. This can go right up in the phonetics

section if it works

(and here it is!).

<p>

single vowel cmapua syllables early for connectives

<p>

a <- ([Aa] !Badstress Juncture? !Vo1)

<p>

e <- ([Ee] !Badstress Juncture? !Vo1)

<p>

i <- ([Ii] !Badstress Juncture? !Vo1)

<p>

o <- ([Oo] !Badstress Juncture? !Vo1)

63

<p>

u <- ([Uu] !Badstress Juncture? !Vo1)

<p>

Hearly <- (!Predstart [Hh])

<p>

Nearly <- (!Predstart [Nn])

<p>

these appear here for historical reasons and could be moved

later

<p>

Connective <- (sp? !Predstart ([Nn] [Oo] Juncture? !i)? (a/e/i/o/u

/(Hearly a)/(Nearly uu)) Juncture? !Vo2 !(!Predstart [Ff] [Ii])

!(!Predstart [Mm] [Aa]) !(!Predstart [Zz] [Ii]))

<p>

cmapua units starting with consonants. This is the exact

description from NB3. The fancy tail in each of the

three cases is enforcing the rule about pausing before a

following predicate if stressed.

<p>

consonant initial cmapua units may not be followed by vowels

without pause.

<p>

64

I am adding [iy] and [uy] (always monosyllable, yuh and wuh) as

vowel pairs permitted in VV and CVV cmapua units.

it is worth noting that the "yuh" and "wuh" pronunciations of

these diphthongs

are surprising to the English-reading eye.

The use for this envisaged is that the name [ziy] of Y becomes

easy to introduce. Adding word space

is always nice, and these words seem pronounceable. I also made

[yfi] possible: Y now has phonetically

regular names.

<p>

CmapuaUnit <- ((Co1 Mono Juncture? Vo2 !(Stress2 sp? &Co1 Predstart

) Juncture? !Vo1)/(Co1 (Vv/([Ii] [Yy])/([Uu] [Yy])) !(Stress2 sp

? &Co1 Predstart) Juncture? !Vo1)/(Co1 Vo2 !(Stress2 sp? &Co1

Predstart) Juncture? !Vo1))

<p>

A stream of cmapua is read until the start of a predicate or a

name marker word or an alien text marker word or a quote or

parenthesis marker word is encountered.

the stream might resume with a name marker word if it does not

in fact start a name word and does not potentially start a name

word due to inexplicit whitespace (doesn’t satisfy the bad name

marker condition).

<p>

we force explicit comma pauses before logical connectives, but

not before vowel initial cmapua in general;

65

other conditions force at least whitespace, which does stand

for a pause, before such words.

<p>

detect starts of quotes or parentheses with li or [kie]

<p>

Likie <- (([Ll] [Ii] Juncture? !Vo1)/([Ki] [Ii] Juncture? [Ee]

Juncture? !Vo1))

<p>

a special provision is made for NO UI forms as single words. [

yfi] is supported.

<p>

Cmapua <- (&caprule !Badnamemarker ((!Predstart (Vv/([Ii] [Yy])/([

Uu] [Yy])) !(Stress2 sp? &Co1 Predstart) Juncture? NOI0)/(!

Predstart [Nn] [Oo] Juncture? !Predstart (Vv/([Ii] [Yy])/([Uu] [

Yy])) !(Stress2 sp? &Co1 Predstart) Juncture?)/((!Predstart (Vv

/([Ii] [Yy])/([Uu] [Yy])) !(Stress2 sp? &Co1 Predstart) Juncture

?)+/(((!Predstart Vo1 !(Stress2 sp? &Co1 Predstart) Juncture?)

/(!Predstart CmapuaUnit)) (!Namemarker !Alienmarker !Likie !

Predstart CmapuaUnit)*))/(!Predstart Vo2 !(Stress2 sp? &Co1

Predstart) Juncture?)) !Vo1 !(Co1+ Juncture) !(sp? Connective))

<p>

I have apparently now completely solved the problem of parsing

cmapua as well as name words.

<p>

<H3>Predicate Phonetics</H3>

Now for predicates.

66

<H4>Djifoa ("affixes")</H4>

<p>

the elementary djifoa (not borrowings)

<p>

various special flavors of these djifoa will be needed.

These are the general definitions.

<p>

The NOY and Bad forms are for use for testing candidate

borrowings for resolution

with bad syllable break placements. Borrowings do not contain Y

...

<p>

CVV djifoa with phonetic hyphens.

<p>

added checks to all cmapua classes: the vowel final ones, when

not phonetically hyphenated, cannot

be followed by a regular vowel. This is crucial for getting the

syllable analysis and the djifoa

analysis to end at the same point.

<p>

allowing h to be inserted before y in CVVy djifoa for a CVVhy

form.

<p>

67

allowing -r glue to be expressed as -rr

 some classes just for djifoa glue

<p>

wy <- [Yy]

<p>

ar <- [Rr]

<p>

en <- [Nn]

<p>

hh <- [Hh]

<p>

Dash <- [-]

<p>

Cvv <- (Co1 Vv ((Juncture? hh? wy Dash? &Complex)/(Juncture? ar ar?

Juncture? &Co1)/(en Juncture? &ar)/(Juncture? !Vo2)))

<p>

CvvNoHyphen <- (Co1 Vv Juncture? !Vo2)

<p>

CvvHiddenStress <- (Co1 &DoubleVowel Vo1 Dash? Vo1 ((Dash? hh? wy

Dash? &Complex)/(ar Dash? &Co1)/(en Dash? &ar)/(Dash? !Vo2)))

<p>

68

CvvFinalStress <- (Co1 Vv ((Stress2 hh? wy Dash? &Complex)/(ar

Stress2 &Co1)/(Stress2 ar ar Juncture? &Co1)/(en Stress2 &ar)/(

Stress2 !Vo2)))

<p>

CvvNoY <- (Co1 Vv ((Juncture? ar ar? Juncture? &Co1)/(en Juncture?

&ar)/(Juncture? !Vo2)))

<p>

CvvNoYFinalStress <- (Co1 Vv ((ar Stress2 &Co1)/(Stress2 ar ar

Juncture? &Co1)/(en Stress2 &ar)/(Stress2 !Vo2)))

<p>

CvvNoYMedialStress <- (Co1 !BrokenMono Vo2 Stress2 Vo2 Dash? !Vo2)

<p>

CCV djifoa with phonetic hyphens.

<p>

Ccv <- (Initial Vo2 ((Juncture? wy Dash? &Letter)/(Juncture? !Vo2))

)

<p>

CcvStressed <- (Initial Vo2 ((Stress2 wy Dash? &Letter)/(Stress2 !

Vo2)))

<p>

CcvNoY <- (Initial Vo2 Juncture? !Vo2)

<p>

CcvBad <- (MaybeInitial Vo2 Juncture? !Vo2)

69

<p>

CCVBadStressed <- (MaybeInitial Vo2 Stress2 !Vo2)

<p>

CVC djifoa with phonetic hyphens. These cannot be final and are

always followed by a consonant (well, the

-y form may be followed by a vowel...

an eccentric syllable break is supported if the CVC is y-

hyphenated:

[me-ky-kiu] and [mek-y-kiu] are both legal. The default is the

latter.

<p>

Cvc <- ((Co1 Vo2 !NoMedial2 !NoMedial3 Co1 ((Juncture? wy Dash? &

Letter)/(Juncture? &Co1)))/(Co1 Vo2 Juncture Co1 wy Dash? &

Letter))

<p>

CvcStressed <- ((Co1 Vo2 !NoMedial2 !NoMedial3 Co1 ((Stress2 wy

Dash? &Letter)/(Stress2 &Letter)))/(Co1 Vo2 Stress2 Co1 wy Dash?

&Letter))

<p>

CvcNoY <- (Co1 Vo2 !NoMedial2 !NoMedial3 Co1 Juncture? &Co1)

<p>

CvcBad <- (Co1 Vo2 !NoMedial2 !NoMedial3 Juncture? Co1 &Co1)

<p>

70

CvcNoYStressed <- (Co1 Vo2 !NoMedial2 !NoMedial3 Co1 Stress2 &Co1)

<p>

CvcBadStressed <- (Co1 Vo2 !NoMedial2 !NoMedial3 Stress2 Co1 &Co1)

<p>

the five letter forms (always final in complexes)

<p>

CcvCv <- (Initial Vo2 Juncture? Co1 Vo2 Dash? !Vo2)

<p>

CcvCvStreased <- (Initial Vo2 Stress2 Co1 Vo2 Dash? !Vo2)

<p>

CcvCvBad <- (MaybeInitial Vo2 Juncture? Co1 Vo2 Dash? !Vo2)

<p>

CcvCvBadStressed <- (MaybeInitial Vo2 Stress2 Co1 Vo2 Dash? !Vo2)

<p>

CvcCv <- ((Co1 Vo2 Juncture? Initial Vo2 Dash? !Vo2)/(Co1 Vo2 !

NoMedial2 Co1 Juncture? Co1 Vo2 Dash? !Vo2))

<p>

CvcCvStressed <- ((Co1 Vo2 Stress2 Initial Vo2 Dash? !Vo2)/(Co1 Vo2

!NoMedial2 Co1 Stress2 Co1 Vo2 Dash? !Vo2))

<p>

the medial five letter djifoa

71

<p>

CcvCy <- (Initial Vo2 Juncture? Co1 wy Dash?)

<p>

CvcCy <- ((Co1 Vo2 Juncture? Initial wy Dash?)/(Co1 Vo2 !NoMedial2

Co1 Juncture? Co1 wy Dash?))

<p>

CcvCyStressed <- (Initial Vo2 Stress2 Co1 wy Dash?)

<p>

CvcCyStressed <- ((Co1 Vo2 Stress2 Initial wy Dash?)/(Co1 Vo2 !

NoMedial2 Co1 Stress2 Co1 wy Dash?))

<p>

<H4>Borrowed Predicates</H4>

to reason about resolution of borrowings into both syllables

and djifoa (we want to exclude the latter

but we need to define it adequately) we need to recognize where

to stop. A predicate word ends either

at a non-character (not a letter or syllable mark: whitespace,

comma or terminal punctuation) or it

has an explicit or deducible penultimate stress. Borrowings do

not contain doubled vowels, so they

have to have explicit stress in the latter case.

<p>

analysis: the stressed tail consists of a stressed syllable

followed by an unstressed syllable.

72

identifying an unstressed final syllable is complicated by

recognizing which CVV combinations can

be one syllable. This will either be an explicitly stressed

syllable followed by a single syllable

or a syllable suitable to be stressed followed by an explicitly

final syllable. CVV djifoa can

contain both syllables in a tail and of course the five letter

djifoa have to be tails. A never stressed

SyllableC (with a continuant) may intervene.

<p>

tail of a borrowing with an explicit stress

<p>

BorrowingTail1 <- (!SyllableC &StressedSyllable BorrowingSyllable

(!StressedSyllable &SyllableC BorrowingSyllable)? !

StressedSyllable &BorrowingSyllable VowelFinal)

<p>

tail of a borrowing or borrowing djifoa with no explicit stress

<p>

BorrowingTail2 <- (!SyllableC BorrowingSyllable (!StressedSyllable

&SyllableC BorrowingSyllable)? !StressedSyllable &

BorrowingSyllable VowelFinal (&wy/!Character))

<p>

tail of a stressed borrowing djifoa, different because stress

is shifted to the end

73

<p>

BorrowingTail3 <- (!SyllableC !StressedSyllable BorrowingSyllable

(!StressedSyllable &SyllableC BorrowingSyllable)? &

BorrowingSyllable InitialConsonants? Vocalic Stress2 &wy)

<p>

BorrowingTail <- (BorrowingTail1/BorrowingTail2)

<p>

short forms that are ruled out: CCVV and CCCVV forms.

<p>

Ccvv <- ((InitialConsonants Vo2 Juncture? Vo2 Juncture? !Character)

/(InitialConsonants Vo2 Stress2 !Mono Vo2 Juncture?))

<p>

VCCV and some related forms are ruled out (rule predstartF

above is about this)

<p>

a continuant syllable cannot be initial in a borrowing and

there cannot be successive continuant

syllables. There really ought to be no more than one!

<p>

borrowing, before checking that it doesnt resolve into djifoa

<p>

PreBorrowing <- (&Predstart !Ccvv !Cmapua !SyllableC (!

BorrowingTail !StressedSyllable !(SyllableC SyllableC)

BorrowingSyllable)* BorrowingTail)

74

<p>

ditto for an explicitly stressed borrowing

<p>

StressedPreBorrowing <- (&Predstart !Ccvv !Cmapua !SyllableC (!

BorrowingTail !StressedSyllable !(SyllableC SyllableC)

BorrowingSyllable)* BorrowingTail1)

<p>

borrowing djifoa without explicit stress (before resolution

check)

<p>

PreBorrowing2 <- (&Predstart !Ccvv !Cmapua !SyllableC (!

BorrowingTail !StressedSyllable !(SyllableC SyllableC)

BorrowingSyllable)* BorrowingTail2)

<p>

stressed borrowing djifoa (before resolution check).

<p>

PreBorrowing3 <- (&Predstart !Ccvv !Cmapua !SyllableC (!

BorrowingTail3 !StressedSyllable !(SyllableC SyllableC)

BorrowingSyllable)* BorrowingTail3)

Now comes the problem of trying to say that a preborrowing

cannot resolve into cmapua. The difficulty is with

recognizing the tail, so making sure that the two resolutions

stop in the same place.

<p>

75

we know because it is a borrowing that there is at most one

explicit stress, and it has to fall

in one of the cmapua! This should make it doable.

<p>

borrowing djifoa are terminated with y, so the final djifoa

needs to take this into account

<p>

the idea behind both djifoa analyses is the same. If we end

with a final djifoa followed by

a non-character, we improve our chances of ending the syllable

analysis at the same point. We control

this by identifying djifoa with stresses in them: a medially

stressed djifoa must be the last one

(and the syllable analysis will find its stressed syllable and

end at its final syllable, the fact

that djifoa cannot be followed by vowels ensuring that the

syllable analysis cannot overrun its end.

When the djifoa is finally stressed, the complex analysis ends

with a further djifoa guaranteed to have

just one syllable, and the syllable analysis again will stop in

the same place. The medial five letter forms

and borrowing djifoa of course are finally stressed mod an

additional unstressed syllable which is skipped

by the syllable analysis, because it allows one to ignore an

actually penultimate syllable with y or

76

a syllabic consonant. In the case where we never find a stress

and end up at a final djifoa, the syllable

analysis will carry right through to the same final point.

<p>

in the attempted resolution of borrowings, our life is easier

because we do not have

borrowing djifoa or medial five letter forms to consider, or

any forms with y-hyphens.

<p>

RfinalDjifoa <- ((CcvCvBad/CvcCv/CvvNoHyphen/CcvBad/CvcBad) (&wy/!

Character))

<p>

RmediallyStressed <- (CcvCvBadStressed/CvcCvStressed/

CvvNoYMedialStress)

<p>

RfinallyStressed <- (CvvNoYFinalStress/CCVBadStressed/

CvcBadStressed/CvcNoYStressed)

<p>

BorrowingComplexTail <- (RmediallyStressed/(RfinallyStressed ((&(

Co1 Mono) CvvNoHyphen)/CcvBad))/RfinalDjifoa)

<p>

ResolvedBorrowing <- ((!BorrowingComplexTail (CvvNoY/CcvBad/CvcBad)

)* BorrowingComplexTail)

<p>

77

borrowed predicates

<p>

Borrowing <- (!ResolvedBorrowing &caprule PreBorrowing !(sp?

Connective))

<p>

explicitly stressed borrowed predicates

<p>

StressedBorrowing <- (!ResolvedBorrowing &caprule

StressedPreBorrowing !(sp? &Vo1 Cmapua))

<p>

#This is the shape of non-final borrowing djifoa. Notice that a

final stress is allowed.

#The curious provision for explicitly stressing a borrowing djifoa

and pausing is supported.

<p>

borrowing djifoa without explicit stress (stressed ones are not

of this class!)

Note that one can pause after these (explicitly, with a comma,

in which case the stress must be explicit too)

<p>

BorrowingDjifoa <- (!ResolvedBorrowing &caprule PreBorrowing2 ((

Stress2 wy [,] sp)/(Juncture? wy Dash?)))

<p>

stressed borrowing djifoa finally implemented!

78

<p>

StressedBorrowingDjifoa <- (!ResolvedBorrowing &caprule

PreBorrowing3 wy Dash? ([,] sp)?)

<p>

<H4>Complex Predicates</H4>

We resolve complexes twice, once into syllables and once into

djifoa. We again have to ensure that

we end up in the same place! The syllable resolution is very

similar to that of borrowings;

the unstressed middle syllable of the tail can be a SyllableY,

and can also be a

SyllableC if the final djifoa is a borrowing.

<p>

A stressed borrowing djifoa with the property that the tail is

still a phonetic complex is

a unit for this analysis.

<p>

note here that I specifically rule out a complex being followed

without pause by y. I do not rule

this out for the vowel final djifoa because they can be

followed by y at the end of a borrowing

djifoa.

<p>

79

DefaultStressedSyllable <- Syllable

<p>

PhoneticComplexTail1 <- (!SyllableC !SyllableY &StressedSyllable

DefaultStressedSyllable (!StressedSyllable &(SyllableC/SyllableY

) Syllable)? !StressedSyllable !SyllableY VowelFinal !Vo1)

<p>

PhoneticComplexTail2 <- (!SyllableC !SyllableY

DefaultStressedSyllable (!StressedSyllable &(SyllableC/SyllableY

) Syllable)? !StressedSyllable !SyllableY VowelFinal !Character)

<p>

PhoneticComplexTail <- (PhoneticComplexTail1/PhoneticComplexTail2)

<p>

note the explicit predstart test here.

<p>

PhoneticComplex <- (&Predstart !Ccvv !Cmapua !SyllableC ((

StressedBorrowingDjifoa &PhoneticComplex)/(!PhoneticComplexTail

!StressedSyllable !(SyllableC SyllableC) Syllable))*

PhoneticComplexTail)

<p>

the analysis of final djifoa and stressed djifoa differs only

in details from

what is above for resolution of borrowings. The issues about

CVV djifoa with doubled

vowels are rather exciting.

<p>

80

a stressed borrowing djifoa with the tail still a phonetic

complex is a black box unit for

this construction.

<p>

My approach imposes the restriction on JCB’s "pause after a

borrowing djifoa" idea that what follows

the pause must itself contain a penultimate stress: [igllu’ymao

] is a predicate but [igllu’y, mao] is not.

while [iglluy’, gudmao] is a predicate.

<p>

the analysis of the djifoa resolution process is the same as

above, with additional remarks

about doubled vowel syllables: notice that where the complex

tail involved a doubled vowel syllable

without explicit stress, we insist on that djifoa or the single

-syllable next djifoa ending in

a non-character: in the absence of explicit stress, we always

rely on whitespace or punctuation

to indicate the end of the predicate.

<p>

all sorts of subtleties about borrowings and borrowing djifoa

are finessed by always looking for

them first. There are no restrictions re fronts of borrowings

or borrowing djifoa looking like regular

81

djifoa; the fact that borrowing djifoa end in y and borrowings

do not contain y makes it always

possible to tell when one is looking at the head of a borrowing

djifoa. Regular djifoa just before a borrowing

djifoa need to be y-hyphenated so as not to be absorbed into

the front of the borrowing (I don’t believe

that I actually need to impose a formal rule to this effect,

though I am not absolutely certain; it would

be difficult to formulate [and does appear in the previous

version, where it is a truly unintelligible piece

of PEG code]).

<p>

FinalDjifoa <- ((Borrowing/CcvCv/CvcCv/CvvNoHyphen/CcvNoY) !

Character)

<p>

MediallyStressed <- (StressedBorrowing/CcvCvStreased/CvcCvStressed/

CvvNoYMedialStress)

<p>

FinallyStressed <- (StressedBorrowingDjifoa/CcvCyStressed/

CvcCyStressed/CvvFinalStress/CcvStressed/CvcStressed)

<p>

ComplexTail <- ((CvvHiddenStress ((&(Co1 Mono) CvvNoHyphen)/CcvNoY)

!Character)/(FinallyStressed ((&(Co1 Mono) CvvNoHyphen)/CcvNoY)

)/MediallyStressed/FinalDjifoa)

<p>

82

PreComplex <- ((!CvvHiddenStress !ComplexTail ((

StressedBorrowingDjifoa &PhoneticComplex)/BorrowingDjifoa/CvcCy/

CcvCy/Cvv/Ccv/Cvc))* ComplexTail)

<p>

originally I had complicated tests here for the conditions

under which an initial

CVC cmapua has to be y-hyphenated: I was being wrong headed,

the predstart rules

already enforce this (in the bad cases, the initial CV- falls

off). The user will

simply find that they cannot put the word together otherwise.

The previous version

did need this test because it actually used full lookahead to

check for the start of a predicate.

<p>

Complex <- (&caprule &PreComplex PhoneticComplex !(sp? Connective))

<p>

<H3>Quotation and Parenthesis of well-formed Loglan utterances;

word classes</H3>

format for the LI quote and KIE parenthesis

<p>

LiQuote <- ((&caprule [Ll] [Ii] Juncture? Comma2? [\"]

PhoneticUtterance [\"] Comma2? &caprule [Ll] [Uu] Juncture? !(sp

? Connective))/(&caprule [Kk] [Ii] Juncture? [Ee] Juncture?

Comma2? [(] PhoneticUtterance [)] Comma2? &caprule [Kk] [Ii]

Juncture? [Uu] Juncture? !(sp? Connective)))

83

<p>

the condition on Word that a Cmapua is not followed by another

Cmapua

with mere whitespace between was used by [liu] quotation, but

is now redundant,

because I have required that [liu] quotations be closed with

explicit pauses in all cases.

<p>

Word <- (NAMEWORD/Cmapua/Complex/CcvNoY)

<p>

it is an odd point that all borrowings parse as complexes -- so

when I parsed all the words the first time they all

parsed as complexes. A borrowing is a complex consisting of a

single final borrowing djifoa!

I did redesign this so that borrowings are parsed as borrowings

. (This is the class

I used to parse the dictionary).

<p>

Yes, CVC djifoa do get parsed as names in the dictionary, so

the CVC case here is redundant. I actually

think that only the CCV djifoa actually get parsed as such.

<p>

SingleWord <- (((Borrowing !.)/(Complex !.)/(Word !.)/(PRENAME !.)/

CcvNoY) !.)

84

<p>

name word appearing initially without leading spaces is

important, because one type of NameWord includes a leading comma

.

<H3>The full phonetic utterance classes</H3>

<p>

PhoneticUtterance1 <- (NAMEWORD/(sp? LiQuote)/(sp? NAMEWORD)/(sp?

AlienWord)/(sp? Cmapua)/(sp? ’--’)/(sp? ’...’)/(sp? Borrowing !

wy)/(sp? Complex)/(sp? CcvNoY))+

<p>

PhoneticUtterance <- (PhoneticUtterance1/([,] sp)/Terminal)+

<p>

<H2>Interlude: Phonemes and Pauses</H2>

<H3>Consonants and vowel groups in cmapua</H3>

as noted above, !predstart stands in for the computationally

disastrous &Cmapua

<p>

Badstress <- (Stress2 sp? &Co1 Predstart)

<p>

b <- (!Predstart [Bb])

<p>

c <- (!Predstart [Cc])

<p>

85

d <- (!Predstart [Dd])

<p>

f <- (!Predstart [Ff])

<p>

g <- (!Predstart [Gg])

<p>

h <- (!Predstart [Hh])

<p>

j <- (!Predstart [Jj])

<p>

k <- (!Predstart [Kk])

<p>

l <- (!Predstart [Ll])

<p>

m <- (!Predstart [Mm])

<p>

n <- (!Predstart [Nn])

<p>

p <- (!Predstart [Pp])

<p>

86

r <- (!Predstart [Rr])

<p>

s <- (!Predstart [Ss])

<p>

t <- (!Predstart [Tt])

<p>

v <- (!Predstart [Vv])

<p>

z <- (!Predstart [Zz])

<p>

the monosyllabic classes may be followed by one vowel

if they start a Cvv-V cmapua unit; the others may never

be followed by vowels. Classes ending in -b are

used in Cvv-V cmapua units.

<p>

the single vowel classes were moved before the class

connective in the phonetics section.

<p>

Vo3 <- (Juncture? Vo2 !Badstress)

<p>

87

aa <- ([Aa] Juncture? [Aa] !Badstress Juncture? !Vo1)

<p>

ae <- ([Aa] Juncture? [Ee] !Badstress Juncture? !Vo1)

<p>

ai <- ([Aa] [Ii] !Badstress Juncture? !Vo1)

<p>

ao <- ([Aa] [Oo] !Badstress Juncture? !Vo1)

<p>

ai2 <- ([Aa] [Ii] !Badstress Juncture? &(Vo2 Juncture? !Vo1))

<p>

ao2 <- ([Aa] [Oo] !Badstress Juncture? &(Vo2 Juncture? !Vo1))

<p>

au <- ([Aa] Juncture? [Uu] !Badstress Juncture? !Vo1)

<p>

ea <- ([Ee] Juncture? [Aa] !Badstress Juncture? !Vo1)

<p>

ee <- ([Ee] Juncture? [Ee] !Badstress Juncture? !Vo1)

<p>

ei <- ([Ee] [Ii] !Badstress Juncture? !Vo1)

<p>

88

ei2 <- ([Ee] [Ii] !Badstress Juncture? &(Vo2 Juncture? !Vo1))

<p>

eo <- ([Ee] Juncture? [Oo] !Badstress Juncture? !Vo1)

<p>

eu <- ([Ee] Juncture? [Uu] !Badstress Juncture? !Vo1)

<p>

ia <- ([Ii] Juncture? [Aa] !Badstress Juncture? !Vo1)

<p>

ie <- ([Ii] Juncture? [Ee] !Badstress Juncture? !Vo1)

<p>

ii <- ([Ii] Juncture? [Ii] !Badstress Juncture? !Vo1)

<p>

io <- ([Ii] Juncture? [Oo] !Badstress Juncture? !Vo1)

<p>

iu <- ([Ii] Juncture? [Uu] !Badstress Juncture? !Vo1)

<p>

ia2 <- ([Ii] Juncture? [Aa] !Badstress Juncture? &(Vo2 Juncture? !

Vo1))

<p>

ie2 <- ([Ii] Juncture? [Ee] !Badstress Juncture? &(Vo2 Juncture? !

Vo1))

89

<p>

ii2 <- ([Ii] Juncture? [Ii] !Badstress Juncture? &(Vo2 Juncture? !

Vo1))

<p>

io2 <- ([Ii] Juncture? [Oo] !Badstress Juncture? &(Vo2 Juncture? !

Vo1))

<p>

iu2 <- ([Ii] Juncture? [Uu] !Badstress Juncture? &(Vo2 Juncture? !

Vo1))

<p>

oa <- ([Oo] Juncture? [Aa] !Badstress Juncture? !Vo1)

<p>

oe <- ([Oo] Juncture? [Ee] !Badstress Juncture? !Vo1)

<p>

oi <- ([Oo] [Ii] !Badstress Juncture? !Vo1)

<p>

oi2 <- ([Oo] [Ii] !Badstress Juncture? &(Vo2 Juncture? !Vo1))

<p>

oo <- ([Oo] Juncture? [Oo] !Badstress Juncture? !Vo1)

<p>

ou <- ([Oo] Juncture? [Uu] !Badstress Juncture? !Vo1)

90

<p>

ua <- ([Uu] Juncture? [Aa] !Badstress Juncture? !Vo1)

<p>

ue <- ([Uu] Juncture? [Ee] !Badstress Juncture? !Vo1)

<p>

ui <- ([Uu] Juncture? [Ii] !Badstress Juncture? !Vo1)

<p>

uo <- ([Uu] Juncture? [Oo] !Badstress Juncture? !Vo1)

<p>

uu <- ([Uu] Juncture? [Uu] !Badstress Juncture? !Vo1)

<p>

ua2 <- ([Uu] Juncture? [Aa] !Badstress Juncture? &(Vo2 Juncture? !

Vo1))

<p>

ue2 <- ([Uu] Juncture? [Ee] !Badstress Juncture? &(Vo2 Juncture? !

Vo1))

<p>

ui2 <- ([Uu] Juncture? [Ii] !Badstress Juncture? &(Vo2 Juncture? !

Vo1))

<p>

uo2 <- ([Uu] Juncture? [Oo] !Badstress Juncture? &(Vo2 Juncture? !

Vo1))

91

<p>

uu2 <- ([Uu] Juncture? [Uu] !Badstress Juncture? &(Vo2 Juncture? !

Vo1))

<p>

adding the new IY and UY, which might see use some time.

they are mandatory monosyllables but do not take a possible

additional

following vowel as the regular ones do. So far only used in [

ziy].

<p>

iy <- ([Ii] [Yy] !Badstress Juncture? !Vo1)

<p>

uy <- ([Uu] [Yy] !Badstress Juncture? !Vo1)

<p>

<H3>The optional pause and commas</H3>

<p>

this is a pause not required by the phonetics. This is the only

sort of pause which could in principle carry semantic freight (

the

pause/GU equivalence beloved of our Founder) but we have

abandoned

this. There is one place, after initial no in an utterance,

where

92

a pause can have effect on the parse (but not on the meaning, I

believe,

unless a word break is involved).

<p>

this class should NEVER be used in a context which might follow

a name word. In previous versions, pauses after name words were

included

in the name word; this is not the case here, so a PAUSE

after a name word would not be recognized as a mandatory pause.

<p>

in any event, as long as we stay away from pause/GU equivalence

, this

is not a serious issue!

<p>

this class does do some work in the handling of issues

surrounding the legacy

shape of APA connectives, concerning which the less said, the

better.

<p>

OptPause <- ([,] sp !(Vo1/Connective) &caprule)

<p>

more punctuation

<p>

93

Comma <- ([,] sp &caprule)

<p>

Comma2 <- ([,]? sp &caprule)

<p>

<H2>Part II: Lexicography</H2>

In this section I develop the grammar of words in Loglan. I’ll

work by editing the original provisional PEG grammar.

<p>

I place the start of this section exactly here, just before two

final items of

punctuation, because these items of punctuation look forward

not only to lexicography

but to the full grammar!

<H3>Period and end of utterance</H3>

<p>

the end of utterance symbol [#] should be added in the

phonetics

section as a species of terminal marker. Done. We do *not*

actually

endorse use of this marker, but we can notionally support it

and it is in

our sources.

<p>

94

End <- ((sp? ’#’ sp utterance)/(sp !.)/!.)

<p>

this rule allows terminal punctuation to be followed by an

inverse vocative,

a frequent occurrence in Leith’s novel, and something which

makes sense.

<p>

Period <- (([!.:;?] (&End/(sp &caprule))) (invvoc Period?)?)

<p>

Letters with y will be special cases

idea: allow IY and UY (always monosyllables) as vowel

combinations in cmapua only.

done: Y has a name now. [yfi] is also added.

<p>

<H3>The cmapua word classes</H3>

the classes in this section after this point are the cmapua

word classes of Loglan (if they begin with sp? or a word class).

I suppose the alien text classes are not really word classes,

but they are lexicographic items, as it were.

Paradoxically, the PA and NI classes admit internal explicit

pauses. So of course do predicate words!

<p>

95

Loglan does admit true multisyllable cmapua: there are words

made of cmapua units which have joints between

units at which one cannot pause without breaking the word.

Lojban, I am told, does not.

<p>

this version has the general feature that the quotation and

alien text constructions are not hacked:

they are supported by the phonetic rules (as dire exceptions,

of course) and the grammatical constructions

conform with the phonetic layer. Alien text and utterances

quoted with [li]...[lu] can be enclosed in double quotes.

LI only supports full utterances, for the moment. All alien

text constructors take the same class as argument:

the vocative and inverse vocative *require* quotes to avoid

misreading ungrammatical expressions with typos

as correct (inverse) vocatives.

<p>

<H4>Letterals (first approximation) </H4>

the names [yfi], [ziy] for Y are supported. The Ceo names are

left as they are. I decided that a second short series

of letteral pronouns is actually a reasonable use of short

words, and the Ceio words are there for other uses.

<p>

TAI0 <- ((Vo1 Juncture? m a)/(Vo1 Juncture? f i)/(Vo1 Juncture? z i

)/(!Predstart Co1 ai)/(!Predstart Co1 ei)/(!Predstart Co1 ai2 u)

/(!Predstart Co1 ei2 u)/(!Predstart Co1 eo)/(z [Ii] Vo1 !

96

Badstress Juncture? !Vo1 (m a)?))

<p>

<H4>Logical and causal connectives</H4>

a negative suffix used in various contexts. Always a suffix:

its use as a prefix in tenses was a mistake in NB3 and I

think still supported in LIP. Ambiguities demonstrably followed

from this usage (an example of how the demonstration

of non-ambiguity of 1989 Loglan was compromised by the opaque

lexicography).

<p>

NOI0 <- (n oi)

<p>

the logical connectives. [A0] is the class of core logical

connectives. [A] is the fully decorated logical connective with

possible nu- (always in nuno- or nuu) and no- prefixes,

possible -noi suffix, and possible (problematic) PA suffix,

closed

with -fi (our new proposal) or an explicit pause.

<p>

A0 <- (&Cmapua (a/e/o/u/(h a)/(n uu)))

<p>

A <- (sp? !Predstart !TAI0 (n [o])? A0 NOI0? !(sp PAWORD0 OptPause)

!(PAWORD0 !OptPause [,]) (PAWORD0 ((f i)/&OptPause))?)

<p>

97

4/18 in connected sentpreds, fi must be used to close, not a

pause.

<p>

A2 <- sp? !predstart !TAI0 (N [o])? A0 NOI? !(sp PANOPAUSES

PAUSE) !(PANOPAUSES !PAUSE [,]) (PANOPAUSES (F i))?

<p>

A not closed with -fi or a pause

<p>

ANOFI <- (sp? (!Predstart !TAI0 ((n [o])? A0 NOI0? PAWORD0?)))

<p>

AONE <- A

<p>

versions of A with different binding strength

<p>

ACI <- (ANOFI c i)

<p>

AGE <- (ANOFI g e)

<p>

a tightly binding series of logical connectives used to link

predicates

this also includes the fusion connective [ze] when used between

predicates.

98

<p>

CA0 <- (((n o)? ((c a)/(c e)/(c o)/(c u)/(z e)/(c i h a)/(n u c u))

) NOI0?)

<p>

CA1 <- (CA0 !(sp PAWORD0 OptPause) !(PAWORD0 !OptPause [,]) (

PAWORD0 ((f i)/&OptPause))?)

<p>

CANOFI1 <- (CA0 PAWORD0?)

<p>

CA <- (sp? CA1)

<p>

the fusion connective when used in arguments

<p>

ZE <- (sp? (z e))

<p>

sentence connectives. [I] is the class of utterance initiators

(no logical definition).

the subsequent classes are inhabited by sentence logical

connectives with various binding

strengths.

<p>

99

I <- (sp? !Predstart !TAI0 i !(sp PAWORD0 OptPause) !(PAWORD0 !

OptPause [,]) (PAWORD0 ((f i)/&OptPause))?)

<p>

ICA <- (sp? i ((h a)/CA1))

<p>

ICI <- (sp? i CANOFI1? c i)

<p>

IGE <- (sp? i CANOFI1? g e)

<p>

forethought logical connectives

<p>

KA0 <- ((k a)/(k e)/(k o)/(k u)/(k i h a)/(n u k u))

<p>

causal and comparative modifiers

<p>

KOU0 <- ((k ou)/(m oi)/(r au)/(s oa)/(m ou)/(c iu))

<p>

negative and converse forms

<p>

KOU1 <- (((n u n o)/(n u)/(n o)) KOU0)

<p>

100

the full type of forethought connectives, adding the causal and

comparative connectives

<p>

KA <- (sp? (KA0/((KOU1/KOU0) k i)) NOI0?)

<p>

the last component of the KA...KI... structure of forethought

connections

<p>

KI <- (sp? (k i) NOI0?)

<p>

causal and comparative modifiers which are *not* forethought

connectives

KOU2 <- (KOU1 !KI)

<p>

<H4>Quantity words</H4>

<p>

a test used to at least partially enforce the penultimate

stress rule on quantifier predicates

<p>

BadNIStress <- ((Co1 Vo2 Vo2? Stress (m a)? (m oa)? NI RA0)/(Co1

Vo2 Stress Vo2 (m a)? (m oa)? NI RA0))

<p>

101

root quantity words, including the numerals (removing [kue] for

another use)

<p>

NI0 <- (!BadNIStress ((k ua)/(g ie)/(g iu)/(h ie)/(h iu)/(n ea)/(n

io)/(p ea)/(p io)/(s uu)/(s ua)/(t ia)/(z oa)/(z oo)/(h o)/(n i)

/(n e)/(t o)/(t e)/(f o)/(f e)/(v o)/(v e)/(p i)/(r e)/(r u)/(s

e)/(s o)/(h i)))

<p>

the class of SA roots, which modify quantifiers

<p>

SA0 <- (!BadNIStress ((s a)/(s i)/(s u)/(ie (Comma2? !ie SA0)?))

NOI0?)

<p>

the family of quantifiers which double as suffixes for the

quantifier predicates

this class perhaps should also include some other quantifier

words. [re] for example ought to be handled in the same way as [

ra,ri,ro].

No action here, just a remark. Added [bao], which forms lambda

abstractions (relations) not statements, to be used in lepu

clauses.

<p>

RA0 <- (!BadNIStress ((r a)/(r i)/(r e)/(r u)/(r o)/(b ao)))

<p>

re and ru added to class RA 5/11/18

102

<p>

quantifier units consisting of a NI or RA root with [ma] 00 or

[moa] 000 appended; to [moa] one can further

append a digit to iterate [moa]: [fomoate] is four billion, for

example. [rimoa], a few thousand.

<p>

a NI1 or RA1 may be followed by a pause before another NI word

other than a numerical predicate;

one is allowed to breathe in the middle of long numerals. I

question whether the pause

provision makes sense in RA1.

<p>

NI1 <- ((NI0 (!BadNIStress m a)? (!BadNIStress m oa NI0*)?) (Comma2

!(NI RA0) &NI)?)

<p>

RA1 <- ((RA0 (!BadNIStress m a)? (!BadNIStress m oa NI0*)?) (Comma2

!(NI RA0) &NI)?)

<p>

a composite NI word, optional SA prefix before a sequence of NI

words or a RA word,

or a single SA word [which will modify a default quantifier not

expressed],

possibly negated, connected with CA0 roots to other such

constructs.

<p>

103

NI2 <- (((SA0? (NI1+/RA1))/SA0) NOI0? (CA0 ((SA0? (NI1+/RA1))/SA0)

NOI0?)*)

<p>

a full NI word with an acronymic dimension (starting with [mue

], ending with a pause) or [cu] appended. I need to look up [cu]

and figure out its semantics. An arbitrary name word may now be

used as a dimension, as well.

<p>

NI <- (sp? (p i)? NI2 ((&(m ue) ACRONYM (Comma/&End/&Period) !(c u)

)/(Comma2? m ue Comma2? PRENAME !(c u)))? (c u)?)

<p>

mex is now identical with NI, but it’s in use in later rules.

<p>

mex <- (sp? NI)

<p>

<H4> The overused CI</H4>

a word used for various tightly binding constructions: a sort

of verbal hyphen.

also a name marker, which means phonetic care is needed (pause

after constructions with [ci]).

<p>

CI <- (sp? (c i))

<H4>Acronyms</H4>

104

Acronyms, which are names (not predicates as in 1989 Loglan) or

dimensions (in NI above).

units in acronym are TAI0 letterals, zV short forms for vowels,

the dummy unit [mue], and NI1

quantity units. NI1 quantity units may not be initial. [mue]

units may be preceded by pauses.

An acronym has at least two units.

<p>

it is worth noting that acronyms, once viewed as names, could

be entirely suppressed as a feature of the

grammar by really making them names (terminate them with -n). I

suppose a similar approach would work

for dimensions, allowing any name word to serve as a dimension.

[mue] would be a name marker for use

with dimensions in this case. [temuedain], three dollars. Now

supported.

<p>

ACRONYM <- (sp? &caprule ((m ue)/TAI0/(z Vo2 !Vo2)) ((Comma &

ACRONYM m ue)/NI1/TAI0/(z Vo2 (!Vo2/(z &Vo2))))+)

<p>

<H4>Letterals and other pronouns</H4>

the full class of letterals, including the [gao] construction

whose details I should look at.

<p>

105

TAI <- (sp? (TAI0/((g ao) !Vo2 sp? (PRENAME/Predicate/CmapuaUnit)))

)

<p>

atomic non-letteral pronouns.

<p>

#4/15/2019 reserved [koo] for a Lojban style imperative pronoun,

though not officially adopting it. Also adding [dao] for a

default, don’t care argument, another Lojban feature.

<p>

DA0 <- ((t ao)/(t io)/(t ua)/(m io)/(m iu)/(m uo)/(m uu)/(t oa)/(t

oi)/(t oo)/(t ou)/(t uo)/(t uu)/(s uo)/(h u)/(b a)/(b e)/(b o)/(

b u)/(d a)/(d e)/(d i)/(d o)/(d u)/(m i)/(t u)/(m u)/(t i)/(t a)

/(m o)/(k oo)/(d ao))

<p>

letterals (not including [gao] constructions and atomic

pronouns optionally suffixed with a digit. One should pause

after the

suffixed forms, because [ci] is a name marker.

<p>

DA1 <- ((TAI0/DA0) (c i ![] NI0)?)

<p>

general pronoun words.

<p>

DA <- (sp? DA1)

106

<p>

<H4>Tenses, locatives and modals</H4>

roots for PA words: tense and location words, prepositions

building relative modifiers. All can optionally be negated with

-noi. They may also be quantified. They may also be closed with

ZI class affixes. PA cores.

<p>

 put the long list of atomic PA words in a wrapper

<p>

PA00 <- ((g ia)/(g ua)/(p au)/(v au)/(f au)/(p ia)/(p ua)/(n ia)/(n

ua)/(b iu)/(f ea)/(f ia)/(f ua)/(v ia)/(v ii)/(v iu)/(c oi)/(d

au)/(d ii)/(d uo)/(f oi)/(f ui)/(g au)/(h ea)/(k au)/(k ii)/(k

ui)/(l ia)/(l ui)/(m ia)/(n ui)/(p eu)/(r oi)/(r ui)/(s ea)/(s

io)/(t ie)/(v ie)/(v a)/(v i)/(v u)/(p a)/(n a)/(f a)/(v a)/(

KOU0 !(n oi) !KI))

<p>

PA0 <- (NI2? (n u !KOU0)? PA00 (n oi)? ZI?)

<p>

the form used for actual prepositions and suffixes to A words,

with minimal pauses allowed.

these are built by concatenating KOU2 and PA0 units, then

linking these with CA0 roots (which can take

no- prefixes and -noi suffixes, and next to which one *can*

pause), optionally suffixed with a class ZI suffix.

<p>

PAWORD0 <- ((KOU2/PA0)+ ((Comma2? CA0 Comma2?) (KOU2/PA0)+)*)

107

<p>

prepositional words

<p>

PAWORD <- (sp? PAWORD0)

<p>

class PA can appear as tense markers or as relative modifiers

without arguments; here pauses

are allowed not only next to CA0 units but between KOU2/PA

units. Like NI words, PA

words are a class of arbitrary length constructions, and we

think breaths within them

(especially complex ones) are natural.

<p>

PAPHRASE0 <- (((KOU2/PA0)+ (((Comma2? CA0 Comma2?)/(Comma2 !mod1a))

(KOU2/PA0)+)*) !modifier)

<p>

PAPHRASE <- (sp? PAPHRASE0)

<p>

GA <- (sp? (g a))

<p>

the class of tense markers which can appear before predicates.

<p>

108

TENSE <- (PAPHRASE/GA)

<p>

suffixes which indicate extent or remoteness/proximity of the

action of prepositions.

<p>

ZI <- ((z i)/(z a)/(z u))

<p>

<H4> Articles and other descriptors</H4>

the primitive description building "articles". These include [

la] which requires special

care in its use because it is a name marker.

<p>

LE <- (sp? ((l ea)/(l eu)/(l oe)/(l ee)/(l aa)/(l e)/(l o)/(l a)))

<p>

articles which can be used with abstract descriptions: these

include some quantity words.

this means that some abstract descriptions are semantically

indefinites: I wonder if this

could be improved by having a separate abstract indefinite

construction.

<p>

LEFORPO <- (sp? ((l e)/(l o)/NI2))

109

<p>

the numerical/quantity article.

<p>

LIO <- (sp? (l io))

<p>

structure words for the ordered and unordered list

constructions.

<p>

LAU <- (sp? (l au))

<p>

LOU <- (sp? (l ou))

<p>

LUA <- (sp? (l ua))

<p>

LUO <- (sp? (l uo))

<p>

ZEIA <- (sp? z ei2 a)

<p>

ZEIO <- (sp? z ei2 o)

<p>

initial and final words for quoting Loglan utterances.

110

<p>

LIWORD <- (l i)

<p>

LUWORD <- (l u)

<p>

<H4>Quotations and other alien text constructions</H4>

quoting Loglan utterances, with or without explicit double

quotes (if they appear, they must

appear on both sides). The previous version allowed quotation

of names; likely this should

be restored.

<p>

liquote <- ((sp? LIWORD Comma2? utterance0 Comma2? LUWORD)/(sp?

LIWORD Comma2? [\"] utterance0 [\"] Comma2? LUWORD))

<p>

the foreign name construction. This is an alien text

construction

<p>

LAO <- (sp? &(LAOalien Juncture?) AlienWord)

<p>

the strong quotation construction. This is an alien text

construction.

111

<p>

LIE <- (sp? &(LIEalien Juncture?) AlienWord)

<p>

LIOALIEN <- (sp? &(LIOalien Juncture?) AlienWord)

<p>

I am not sure this class is used at all.

<p>

Lw <- Cmapua

<p>

articles for quotation of words

<p>

LIU0 <- ((l iu)/(n iu))

<p>

this now imposes the condition that an explicit comma pause (or

terminal punctuation, or end) must appear at the end of the

Word or PreName quoted with [liu]. This seems like a good idea,

anyway.

<p>

this class appeals to the phonetics. Words and PreNames can be

quoted. The ability to quote names

here may remove the need to quote them with [li]...[lu]. Of

course, some Words are in fact phrases rather

112

than single words: we will see whether the privileges afforded

are used. The final clause allows

use of letterals as actual names of letters.

<p>

added [niu]: didn’t make it a name marker.

<p>

LNIU <- (([Ll]/[Nn]) [iI] Juncture? [Uu])

<p>

<p>

LIU <- ((sp? LNIU Juncture? !Vo1 Comma2? (PRENAME/Word) &(Comma/

Terminal/End))/(sp? (l ii TAI)))

<p>

the construction of foreign and onomatopoeic predicates. These

are alien text constructions.

<p>

SUE <- (sp? &(([Ss] [Uu] Juncture? [Ee] Juncture?)/([Ss] [Aa] [Oo]

Juncture?)) AlienWord)

<p>

<H4>Assorted left and right closers</H4>

left marker in a predicate metaphor construction

<p>

CUI <- (sp? (c ui))

113

<p>

other uses of GA

<p>

GATWO <- (sp? (g a))

<p>

ge/geu act as "parentheses" to make an atomic predicate from a

complex metaphorically

and logically connected predicates; [ge] has other left marking

uses.

<p>

GE <- (sp? (g e))

<p>

GEU <- (sp? ((c ue)/(g eu)))

<p>

final marker of a list of head terms

<p>

GI <- (sp? ((g i)/(g oi)))

<p>

used to move a normally prefixed metaphorical modifier after

what it modifies.

<p>

GO <- (sp? (g o))

114

<p>

marker for second and subsequent arguments before the predicate

; NEW

<p>

GIO <- (sp? (g io))

<p>

the generic right marker of many constructions.

<p>

GU <- (sp? (g u))

various flavors of right markers.

It should be noted that at one point I executed a program of

simplifying these to

reduce the likelihood that multiple [gu]’s would ever be needed

to close an utterance.

first of all, I made the closures leaner, moving them out of

the classes closed

to their clients so that they generally can be used only when

needed.

Notably, the grammar of [guu] is quite different. Second,

I introduced some new flavors of right marker. All can be

realized with [gu],

but if one knows the right flavor one can close the right

structure with a single

115

right closure.

right markers of subordinate clauses (argument modifiers).

[gui] closes a different class than in the trial.85 grammar,

with

similar but on the whole better results.

<p>

GUIZA <- (sp? (g ui) (z a))

<p>

GUIZI <- (sp? (g ui) (z i))

<p>

GUIZU <- (sp? (g ui) (z u))

<p>

GUI <- (!GUIZA !GUIZI !GUIZU (sp? (g ui)))

<p>

right markers of abstract predicates and descriptions.

probably the forms with z are to be preferred (and the other

two are not needed) but I preserve all five classes for now.

<p>

GUO <- (sp? (g uo))

<p>

GUOA <- (sp? ((g uo2 a)/(g uo z a)))

116

<p>

GUOE <- (sp? (g uo2 e))

<p>

GUOI <- (sp? ((g uo2 i)/(g uo z i)))

<p>

GUOO <- (sp? (g uo2 o))

<p>

GUOU <- (sp? ((g uo2 u)/(g uo z u)))

<p>

right marker used to close term (argument/predicate modifier)

lists.

it is important to note that in our grammar GUU is not a

component of

the class termset, nor is it a null termset: it appears in

other classes

which include termsets as an option to close them. The effects

are similar

to those in the trial.85 grammar, but there is less of a danger

that

extra unexpected closures will be needed.

<p>

GUU <- (sp? (g uu))

117

<p>

a new closure for arguments in various contexts

<p>

GUUA <- (sp? (g uu2 a))

<p>

a new closure for sentences. In particular, it

may have real use in closing up the scope of a list of

fronted terms before a series of logically connected sentences.

<p>

GIUO <- (sp? (g iu2 o))

<p>

right marker used to close arguments tightly linked with JE/JUE

.

<p>

GUE <- (sp? (g ue))

<p>

a new closure for descpreds

<p>

GUEA <- (sp? (g ue2 a))

<p>

<H4>Miscellaneous clause constructors</H4>

118

used to build tightly linked term lists.

<p>

JE <- (sp? (j e))

<p>

JUE <- (sp? (j ue))

<p>

used to build subordinate clauses (argument modifiers).

<p>

JIZA <- (sp? ((j ie)/(j ae)/(p e)/(j i)/(j a)) (z a))

<p>

JIOZA <- (sp? ((j io)/(j ao)) (z a))

<p>

JIZI <- (sp? ((j ie)/(j ae)/(p e)/(j i)/(j a)) (z i))

<p>

JIOZI <- (sp? ((j io)/(j ao)) (z i))

<p>

JIZU <- (sp? ((j ie)/(j ae)/(p e)/(j i)/(j a)) (z u))

<p>

JIOZU <- (sp? ((j io)/(j ao)) (z u))

<p>

119

JI <- (!JIZA !JIZI !JIZU (sp? ((j ie)/(j ae)/(p e)/(j i)/(j a))))

<p>

NUJI <- (sp? n u !sp JI)

<p>

JIO <- (!JIOZA !JIOZI !JIOZU (sp? ((j io)/(j ao))))

<p>

<H4>Case tags, semantic and positional</H4>

case tags, both numerical position tags and the optional

semantic case tags.

<p>

DIO <- ((sp? ((b eu)/(c au)/(d io)/(f oa)/(k ao)/(j ui)/(n eu)/(p

ou)/(g oa)/(s au)/(v eu)/(z ua)/(z ue)/(z ui)/(z uo)/(z uu))) ((

c i ![] NI0)/ZI)?)

<p>

markers of indirect reference. Originally these had the same

grammar as case tags,

but they are now different.

<p>

LAE <- (sp? ((l ae)/(l ue)))

<p>

<H4> The predicate constructor me</H4>

120

[me] turns arguments into predicates, [meu] closes this

construction.

<p>

ME <- (sp? ((m ea)/(m e)))

<p>

MEU <- (sp? m eu)

<p>

<H4> Reflexive and conversion operators</H4>

<p>

reflexive and conversion operators: first the root forms, then

those with

optional numerical suffixes.

<p>

NU0 <- ((n uo)/(f uo)/(j uo)/(n u)/(f u)/(j u)/(k ue))

<p>

NU <- (sp? ((((n u)/(n uo)/(k ue)) !(sp (NI0/RA0)) (NI0/RA0)?)/NU0)

+ freemod?)

<p>

<H4>Abstract predicate constructors</H4>

I do *not* think

that [poia] will really be confused with [po ia], particularly

121

since we do require an explicit pause before [ia] in the latter

case,

but I record this concern: the forms with z might be preferable

.

<p>

#constructions from sentences

<p>

PO1 <- (sp? ((p o)/(p u)/(z o)))

<p>

PO1A <- (sp? ((p oi2 a)/(p ui2 a)/(z oi2 a)/(p o z a)/(p u z a)/(z

o z a)))

<p>

PO1E <- (sp? ((p oi2 e)/(p ui2 e)/(z oi2 e)))

<p>

PO1I <- (sp? ((p oi2 i)/(p ui2 i)/(z oi2 i)/(p o z i)/(p u z i)/(z

o z i)))

<p>

PO1O <- (sp? ((p oi2 o)/(p ui2 o)/(z oi2 o)))

<p>

PO1U <- (sp? ((p oi2 u)/(p ui2 u)/(z oi2 u)/(p o z u)/(p u z u)/(z

o z u)))

<p>

abstract predicate constructor from simple predicates

122

<p>

POSHORT1 <- (sp? ((p oi)/(p ui)/(z oi)))

<p>

word forms associated with the above abstract predicate root

forms

<p>

PO <- (sp? PO1)

<p>

POA <- (sp? PO1A)

<p>

POE <- (sp? PO1E)

<p>

POI <- (sp? PO1E)

<p>

POO <- (sp? PO1O)

<p>

POU <- (sp? PO1U)

<p>

POSHORT <- (sp? POSHORT1)

<p>

123

<H4> register markers </H4>

<p>

DIE <- (sp? ((d ie)/(f ie)/(k ae)/(n ue)/(r ie)))

<p>

<H4> freemods and freemod builders </H4>

<p>

vocative forms: I still have the words of social lubrication as

vocative markers.

<p>

HOI <- (sp? ((h oi)/(l oi)/(l oa)/(s ia)/(s ie)/(s iu)))

<p>

the verbal scare quote. The quantifier suffix indicates how

many preceding words are affected;

this is an odd mechanism.

<p>

JO <- (sp? (NI0/RA0/SA0)? (j o))

<p>

markers for forming parenthetical utterances as free modifiers.

<p>

KIE <- (sp? (k ie))

<p>

124

KIU <- (sp? (k iu))

<p>

KIE2 <- (sp? k ie Comma2? [(])

<p>

KIU2 <- (sp? [)] Comma2? k iu)

<p>

marker for forming smilies.

<p>

SOI <- (sp? (s oi))

<p>

a grab bag of attitudinal words, including but not restricted

to the VV forms.

<p>

UI0 <- (!Predstart ((!([Ii] Juncture? [Ee]) Vv Juncture?)/(b ea)/(b

uo)/(c ea)/(c ia)/(c oa)/(d ou)/(f ae)/(f ao)/(f eu)/(g ea)/(k

uo)/(k uu)/(r ea)/(n ao)/(n ie)/(p ae)/(p iu)/(s aa)/(s ui)/(t

aa)/(t oe)/(v oi)/(z ou)/(l oi)/(l oa)/(s ia)/(s ii)/(t oe)/(s

iu)/(c ao)/(c eu)/(s ie)/(s eu)/(s ie2 i)))

<p>

negative forms of the attitudinals. The ones with [no] before

the two vowel forms are a phonetic exception. The others

should also be (though they present no pronunciation problem)

so that they are resolved as single words.

125

<p>

 There is a strong reason for [o] here.

<p>

NOUI <- ((sp? UI0 NOI0)/(sp? n [o] Juncture? Comma? sp? UI0))

<p>

all attitudinals (adding the discursives nefi, tofi... etc)

there is a technical problem with mixing UI0 roots of VV and

CVV shapes.

<p>

UI <- (sp? (UI0+/(NI f i)))

<p>

the inverse vocative marker

<p>

HUE <- (sp? (h ue))

<p>

<H4>Negation</H4>

occurrences of [no] as a word rather than an affix.

<p>

NOWORD <- (sp? !KOU1 !NOUI (n o) !(Comma2? z ao Comma2? Predicate)

!(sp? KOU0) !(sp? (JIO/JI/JIZA/JIOZA/JIZI/JIOZI/JIZU/JIOZU)))

<p>

126

<H3> The large word classes (names and predicates)</H3>

Names, acronyms and PreNames from above.

<p>

ACRONYMICNAME <- (ACRONYM &(Comma/Period/End))

<p>

DJAN <- (PRENAME/ACRONYMICNAME)

<p>

predicate words which are phonetically cmapua

<p>

"identity predicates". Converses are provided as a new proposal

.

<p>

BI <- (sp? (n u)? ((b ia)/(b ie)/(c ie)/(c io)/(b ia)/(b i)/(b ii))

)

<p>

interrogative and pronoun predicates

<p>

LWPREDA0 <- ((h e)/(d ua)/(d ui)/(b ua)/(b ui))

<p>

here I should reinstall the [zao] proposal.

<p>

127

the predicate words defined above in the phonetics section

<p>

Predicate <- ((CmapuaUnit Comma2? z ao Comma2?)* Complex (Comma2? z

ao Comma2? Predicate)?)

<p>

predicate words, other than the "identity predicates" of class

[BI]

these include the numerical predicates (NI RA), also cmapua

phonetically.

<p>

we are installing John Cowan’s [zao] proposal here,

experimentally, 4/15/2019

<p>

PREDA <- (sp? &caprule (Predicate/LWPREDA0/(![] NI RA0)))

<p>

<H2>Part 3: The Grammar Proper</H2>

<H3>Right markers turned into classes</H3>

guoa <- (OptPause? (GUOA/GU) freemod?)

<p>

guoe <- (OptPause? (GUOE/GU) freemod?)

<p>

guoi <- (OptPause? (GUOI/GU) freemod?)

128

<p>

guoo <- (OptPause? (GUOO/GU) freemod?)

<p>

guou <- (OptPause? (GUOU/GU) freemod?)

<p>

guo <- (!guoa !guoe !guoi !guoo !guou (OptPause? (GUO/GU) freemod?)

)

<p>

guiza <- (OptPause? (GUIZA/GU) freemod?)

<p>

guizi <- (OptPause? (GUIZI/GU) freemod?)

<p>

guizu <- (OptPause? (GUIZU/GU) freemod?)

<p>

gui <- (OptPause? (GUI/GU) freemod?)

<p>

gue <- (OptPause? (GUE/GU) freemod?)

<p>

guea <- (OptPause? (GUEA/GU) freemod?)

<p>

guu <- (OptPause? (GUU/GU) freemod?)

129

<p>

guua <- (OptPause? (GUUA/GU) freemod?)

<p>

giuo <- (OptPause? (GIUO/GU) freemod?)

<p>

meu <- (OptPause? (MEU/GU) freemod?)

<p>

geu <- GEU

<p>

Here note the absence of pause/GU equivalence.

<p>

gap <- (OptPause? GU freemod?)

<p>

<H3>The vocative and inverse vocative</H3>

this is the vocative construction. It can appear early because

all of its components are marked.

<p>

the intention is to indicate who is being addressed. This can

be handled via a name, a descriptive argument, a predicate or an

alien text name (the last must be quoted). The complexities of

these grammatical constructions can be deferred until they are

130

introduced.

<p>

HOI0 <- sp? [Hh] [Oo] [Ii] juncture?

<p>

restore words of social lubrication as vocative markers but not

as name markers: [loi, Djan]

<p>

I do not allow a freemod to intervene between a vocative marker

and the associated

utterance, to avoid unintended grabbing of subjects by the

words of social lubrication when they are used

as vocative markers. This lets [Loi, Djan] and [Loi hoi Djan]

be equivalent. The comma needed in the

first because the social lubrication words are in this version

not name markers.

<p>

HOI0 <- ((sp? (([Hh] oi)/([Ll] oi)/([Ll] oa)/([Ss] ia)/([Ss] ie)/([

Ss] iu))) Juncture? !Vo1)

<p>

voc <- ((HOI0 Comma2? name)/(HOI Comma2? descpred guea? namesuffix

?)/(HOI Comma2? argument1 guua?)/(sp? &([Hh] [Oo] [Ii] Juncture

?) AlienWord))

<p>

this is the inverse vocative. It can appear early because all

of its components are marked.

131

<p>

the intention is to indicate who is speaking. The range of ways

this can be handled is similar to the range of ways it can be

handled for the vocative; there is the further option of a

sentence (the [statement] class) and there is a strong closure

option

for the case where an argument is used (to avoid it

inadvertantly expanding to a sentence).

<p>

HUE0 <- (sp? &caprule [Hh] [Uu] Juncture? [Ee] Juncture? !Vo1)

<p>

invvoc <- ((HUE0 Comma2? name)/(HUE freemod? descpred guea?

namesuffix?)/(HUE freemod? statement giuo?)/(HUE freemod?

argument1 guu?)/(sp? &([Hh] [Uu] Juncture? [Ee] Juncture?)

AlienWord))

<p>

<H3>Free modifiers</H3>

this is the class of free modifiers. Most of its components are

head marked (those that aren’t appear just above),

and it is useful for it to appear early because these things

appear everywhere in subsequent constructions. A free modifier,

of whatever sort, is a freely insertable gadget which modifies

the immediately preceding construction, or the entire utterance

if it is initial.

<p>

132

NOUI is a negated attitudinal word. UI1 is an attitudinal word:

these express an emotional attitude toward the

assertion (noting that EI marks questions (yes or no answer

expected) and SEU marks utterances as answers).

<p>

SOI creates smilies in a general sense: [soi crano] indicates

that the listener should imagine the speaker smiling;

similarly for other predicates.

<p>

DIE and NO DIE are register markers, communicating the social

attitude of the speaker toward the one addressed: [die] for

example is "dear"

<p>

KIE...KIU constructs a full parenthetical utterance as a

comment, which can be enclosed in actual parentheses inside

the marker words.

<p>

JO is a scare quote device.

<p>

deletion of a previous word or wordlike unit (or more than one)

using K IA

<p>

133

kiamod <- (Comma2? !(!PRENAME !Predstart k ia) ((PRENAME/LIU/

AlienWord/(Cmapua (sp? !(k ia) !PRENAME !Predstart Cmapua)*)/

Word) kiamod* Comma2? !PRENAME !Predstart k ia) Comma2?)

<p>

the comma is a freemod with no semantic content: this is a

device for discarding phonetically required pauses

and the speaker’s optional pauses alike. The pause before a non

-pause marked prename is part of the NameWord and so

is excluded. Ellipses and dashes are fancy pauses supported as

freemods.

<p>

freemod <- ((kiamod/NOUI/(SOI freemod? descpred guea?)/DIE/(NOWORD

DIE)/(KIE Comma? utterance0 Comma? KIU)/(KIE2 Comma? utterance0

Comma? KIU2)/invvoc/voc/(Comma !(!FalseMarked PRENAME))/JO/UI/(

sp? ’...’ (sp? &Letter)?)/(sp? ’--’ (sp? &Letter)?)) freemod?)

<p>

<H3>Tightly bound arguments and lists thereof</H3>

the classes juelink to linkargs describe very tightly bound

arguments which can be firmly attached to predicates in

the context of metaphorical modifications and the use of

predicates in descriptive arguments.

<p>

note that we allow predicate modifiers (prepositional phrases)

to be bound with [je/jue] which is not

allowed in 1989 Loglan, but which we believe is supported in

Lojban.

134

<p>

juelink <- (JUE freemod? (term/(PAPHRASE freemod? gap?)))

<p>

links1 <- (juelink (freemod? juelink)* gue?)

<p>

links <- ((links1/(KA freemod? links freemod? KI freemod? links1))

(freemod? AONE freemod? links1)*)

<p>

jelink <- (JE freemod? (term/(PAPHRASE freemod? gap?)))

<p>

linkargs1 <- (jelink freemod? (links/gue)?)

<p>

linkargs <- ((linkargs1/(KA freemod? linkargs freemod? KI freemod?

linkargs1)) (freemod? AONE freemod? linkargs1)*)

<p>

<H3>Abstract argument constructions</H3>

class abstractpred supports the construction of event, property

, and quantity predicates from sentences. These are

closable with [guo] if introduced with [po,pu,zo] and closable

with suffixed variants of [guo] if introduced with suffixed

variants of [po,pu,zo] (a NEW idea but it is clear that closure

of these predicates (and of the more commonly

used associated descriptions) is an important issue).

135

<p>

 using sentenceclone so that subject free sentences will not be

marked as imperative

<p>

abstractpred <- ((POA freemod? uttAxclone guoa?)/(POA freemod?

sentenceclone guoa?)/(POE freemod? uttAxclone guoe?)/(POE

freemod? sentenceclone guoe?)/(POI freemod? uttAxclone guoi?)/(

POI freemod? sentenceclone guoi?)/(POO freemod? uttAxclone guoo

?)/(POO freemod? sentenceclone guoo?)/(POU freemod? uttAxclone

guou?)/(POU freemod? sentenceclone guou?)/(PO freemod?

uttAxclone guo?)/(PO freemod? sentenceclone guo?))

<H3>Atomic predicates (predunit)</H3>

predunit1 describes the truly atomic forms of predicate.

<p>

PREDA is the class of predicate words (the phonetic predicate

words along with the special phonetic cmapua which are

predicates, listed

above under the PREDA rule. NU PREDA handles permutations and

identifications of arguments of PREDAs.

<p>

SUE contains the alien text constructions with [sao] and [sue],

semantically quite different but syntactically handled

in the same way.

<p>

[ge]...[geu/cue] (the closing optional) can parenthesize a

fairly complex predicate phrase and turn it into an atomic form.

136

These

forms can have conversion or reflexive operators (NU) applied.

I should look into why the class handled in the conversion case

is different. An important use of this is in metaphor

constructions, but it has other potential uses.

<p>

abstractpred is the class of abstraction predicates just

introduced above. These are treated as atomic in this grammar:

it should

be noted that their privileges in the trial.85 grammar are (

absurdly) limited.

<p>

[me]...[meu] (the closing optional, but important to have

available) forms predicates from arguments, the predicate being

true of the

objects to which the argument refers. [Ti me le mrenu] : this

is one of the men we are talking about.

<p>

predunit1 <- ((SUE/(NU freemod? GE freemod? despredE (freemod? geu

Comma?)?)/(NU freemod? PREDA)/(Comma? GE freemod? descpred (

freemod? geu Comma?)?)/abstractpred/(ME freemod? argument1 meu?)

/PREDA) freemod?)

<p>

[no] binds very tightly to predunit1: a possibly multiply

negated predunit1 (or an unadorned predunit1) is a predunit2.

<p>

137

predunit2 <- ((NOWORD freemod?)* predunit1)

<p>

an instance of NO2 is one not absorbed by a predunit. Example:

[Da no kukra prano] X is a slow (not-fast) runner vs

[Da no ga kukra prano] (X is not a fast runner, and in fact may

not run at all).

<p>

neg2 <- (!predunit2 NOWORD)

<p>

a predunit3 is a predunit2 with tightly attached arguments.

<p>

predunit3 <- ((predunit2 freemod? linkargs)/predunit2)

<p>

a predunit is a predunit3 or a predunit3 converted by the short

-scope abstraction operators

[poi/pui/zoi] to an abstraction predicate. This is the kind of

predicate which can appear as

a component in a serial name.

<p>

predunit <- ((POSHORT freemod?)? predunit3)

<p>

a further "atomic" (because tightly packaged) form is a

forethought connected pair

138

of predicates (this being the full predicate class defined at

the end of the process)

possibly closed with [guu], possibly multiply negated as well.

<p>

the closure with guu eliminated the historic rule against

kekked heads of metaphors.

<p>

kekpredunit <- ((NOWORD freemod?)* KA freemod? predicate freemod?

KI freemod? predicate guu?)

<p>

<H4>The construction of metaphors</H4>

there follows the construction of metaphorically modified

predicates,

along with tightly logically linked predicates.

<p>

CI and simple juxtaposition of predicates both represent

modification of the second

predicate by the first. We impose no semantic conditions on

this modification,

except in the case of modification by predicates logically

linked with CA,

which do distribute logically in the expected way both as

modifiers and as modified.

139

We do not regard [preda1 preda2] as necessarily implying preda2

: we do regard

it as having the same place structure as preda2. It is very

often but not always

a qualification or kind of preda2; in any case it is a relation

analogous to preda2.

<p>

modification with CI binds most tightly.

<p>

we eliminated the distinction between the series of sentence

and description

predicate preliminary classes: there seems to be no need for it

even in the

trial.85 grammar.

<p>

despredA <- ((predunit/kekpredunit) (freemod? CI freemod? (predunit

/kekpredunit))*)

<p>

this is logical connection of predicates with the tightly

binding CA

series of logical connectives. CUI can be used to expand the

scope of

a CA connective over a metaphor on the left. [ge]...[geu] is

used to expand

140

scope on the right (and could also be used on the left, it

should be noted).

descpredC is an internal of despredB assisting the function of

CUI.

the !PREDA in front of CUI is probably not needed.

<p>

despredB <- ((!PREDA CUI freemod? despredC freemod? CA freemod?

despredB)/despredA)

<p>

despredC <- (despredB (freemod? despredB)*)

<p>

tight logical linkage of despredB’s

<p>

despredD <- (despredB (freemod? CA freemod? despredB)*)

<p>

chain of modifications of despredD’s (grouping to the left)

<p>

despredE <- (despredD (freemod? despredD)*)

<p>

the GO construction allows inverse modification: [preda1 GO

preda2] is [preda2 preda1] as it were.

 there are profound effects on grouping.

141

<p>

descpred <- ((despredE freemod? GO freemod? descpred)/despredE)

<p>

this version which appears in sentence predicates as opposed to

descriptions differs

in allowing loosely linked arguments (termsets) instead of

those linked with [je/jue] for the predicate

moved to the end by GO.

<p>

sentpred <- ((despredE freemod? GO freemod? barepred)/despredE)

<p>

<H3>Construction of sentence modifiers</H3>

the construction of predicate modifiers (prepositional phrases

usable as terms along with arguments).

<p>

mod1a <- (PAWORD freemod? argument1 guua?)

<p>

note special treatment of predicate modifiers without actual

arguments.

the !barepred serves to distinguish these predicate modifiers

from actual

"tenses" (predicate markers).

<p>

142

mod1 <- ((PAWORD freemod? argument1 guua?)/(PAPHRASE freemod? !

barepred gap?))

<p>

forethought connection of modifiers. There is some subtlety in

how this is handled.

<p>

kekmod <- ((NOWORD freemod?)* (KA freemod? modifier freemod? KI

freemod? mod))

<p>

mod <- (mod1/((NOWORD freemod?)* mod1)/kekmod)

<p>

afterthought connection of modifiers

<p>

modifier <- (mod (AONE freemod? mod)*)

<p>

<H3>Serial names (a flash point)</H3>

the serial name is a horrid heterogenous construction! It can

involve

components of all three of the major phonetic classes

essentially!

However, I believe I have the definition right, with all the

components

143

correctly guarded :-)

<p>

name <- ((PRENAME/ACRONYMICNAME) ((Comma2? !FalseMarked PRENAME)/(

Comma2? &([Cc] [Ii]) NAMEWORD)/(Comma2? CI predunit !(Comma2? (!

FalseMarked PRENAME)))/(Comma2? CI ACRONYMICNAME))* freemod?)

<p>

LAWORD <- (sp? [Ll] [Aa] Juncture?)

<p>

LANAME <- (LAWORD Comma2? name)

<p>

<H3>General construction of descriptive arguments</H3>

general constructions of arguments with "articles".

<p>

the rules here have the "possessive" construction as in [lemi

hasfa; le la Djan, hasfa] embedded. These are not the same

construction in 1989 Loglan, though speakers might think they

are. Here they are indeed the same. The "possessor" cannot

be "indefinite" (cannot start with a quantifier word); the

possessor can be followed by a tense, as in

[le la Djan, na hasfa], "John’s present house", by analogy with

[lemina hasfa], which is accepted by LIP (because

LIP accepts [lemina] as a word).

<p>

144

there are other subtleties to be reviewed.

<p>

descriptn <- (!LANAME ((LAU wordset1)/(LOU wordset2)/(LE freemod?

((!mex arg1a freemod?)? (PAPHRASE freemod?)?)? ((mex freemod?

arg1a)/(mex freemod? descpred)/descpred))/(GE freemod? mex

freemod? descpred)))

<p>

abstract descriptions. Note that abstract descriptions are

closed with [guo] entirely independently of abstract predicates:

[le po preda guo] does not have a grammatical component [po

preda guo]. This avoids the double closure often apparently

necessary

in Lojban.

<p>

abstractn <- ((LEFORPO freemod? POA freemod? uttAxclone guoa?)/(

LEFORPO freemod? POA freemod? sentenceclone guoa?)/(LEFORPO

freemod? POE freemod? uttAxclone guoe?)/(LEFORPO freemod? POE

freemod? sentenceclone guoe?)/(LEFORPO freemod? POI freemod?

uttAxclone guoi?)/(LEFORPO freemod? POI freemod? sentenceclone

guoi?)/(LEFORPO freemod? POO freemod? uttAxclone guoo?)/(LEFORPO

freemod? POO freemod? sentenceclone guoo?)/(LEFORPO freemod?

POU freemod? uttAxclone guou?)/(LEFORPO freemod? POU freemod?

sentenceclone guou?)/(LEFORPO freemod? PO freemod? uttAxclone

guo?)/(LEFORPO freemod? PO freemod? sentenceclone guo?))

<p>

a wider class of basic argument constructions. Notice that

LANAME is always read by preference to descriptn.

<p>

145

Ciforsuffix <- ([Cc] [Ii])

<p>

namesuffix <- (&((Comma2 !FalseMarked PRENAME)/(sp? Ciforsuffix

Juncture? Comma2? (PRENAME/ACRONYMICNAME))) ((sp? Ciforsuffix

Juncture? Comma2?)/Comma2)? name)

<p>

arg1 <- (abstractn/(LIO freemod? descpred guea?)/(LIO freemod?

argument1 guua?)/(LIO freemod? mex gap?)/LIOALIEN/LAO/LANAME/(

descriptn guua? namesuffix?)/LIU/LIE/liquote)

<p>

this adds pronouns (incl. the fancy [gao] letterals) and the

option of left marking an argument with [ge]

<p>

arg1a <- ((DA/TAI/arg1/(GE freemod? arg1a)) freemod?)

<p>

<H4>Argument modifiers (subordinate clauses)</H4>

argmod1 <- (((sp? (n o) sp?)? ((JI freemod? predicate)/(JIO freemod

? sentence)/(JIO freemod? uttAx)/(JI freemod? modifier)/((JI/

NUJI) freemod? argument1)))/((sp? (n o) sp?)? (((JIZA freemod?

predicate) guiza?)/((JIOZA freemod? sentence) guiza?)/((JIOZA

freemod? uttAx) guiza?)/((JIZA freemod? modifier) guiza?)/(JIZA

freemod? argument1 guiza?)))/((sp? (n o) sp?)? ((JIZI freemod?

predicate guizi?)/(JIOZI freemod? sentence guizi?)/(JIOZI

freemod? uttAx guizi?)/(JIZI freemod? modifier guizi?)/(JIZI

freemod? argument1 guizi?)))/((sp? (n o) sp?)? ((JIZU freemod?

predicate guizu?)/(JIOZU freemod? sentence guizu?)/(JIOZU

freemod? uttAx guizu?)/(JIZU freemod? modifier guizu?)/(JIZU

freemod? argument1 guizu?))))

146

<p>

we improved the trial.85 grammar by closing not argmod1 but

argmod with [gui]. But the labelled argument modifier

constructors

when building an argmod1 have the argmod1 construction closed

with the corresponding labelled right marker, of course. Thus

gui and guiza actually have different grammar.

<p>

trial.85 did not provide forethought connected argument

modifiers, and we also see no need for them,

though they could readily be added.

<p>

argmod <- (argmod1 (AONE freemod? argmod1)* gui?)

<p>

<H4>Arguments resume</H4>

affix argument modifiers to a definite argument

<p>

arg2 <- (arg1a freemod? argmod*)

<p>

build a possibly indefinite argument from an argument: to le

mrenu

<p>

arg3 <- (arg2/(mex freemod? arg2))

147

<p>

build an indefinite argument from a predicate

<p>

indef1 <- (mex freemod? descpred)

affix an argument modifier to an indefinite argument

<p>

indef2 <- (indef1 guua? argmod*)

<p>

indefinite <- indef2

<p>

link arguments with the fusion connective [ze]

<p>

arg4 <- ((arg3/indefinite) (ZE freemod? (arg3/indefinite))*)

<p>

forethought connection of arguments. Note use of argx

<p>

arg5 <- (arg4/(KA freemod? argument1 freemod? KI freemod? argx))

<p>

arguments with possible negations followed by possible indirect

reference constructions.

148

<p>

argx <- ((NOWORD freemod?)* (LAE freemod?)* arg5)

<p>

afterthought connection with the tightly binding ACI

connectives

<p>

arg7 <- (argx freemod? (ACI freemod? argx)?)

<p>

afterthought connection with the usual A connectives. Can’t

start with GE

to avoid an ambiguity (to which 1989 Loglan is vulnerable)

involving AGE connectives.

<p>

arg8 <- (!GE (arg7 freemod? (AONE freemod? arg7)*))

<p>

afterthought connection (now right grouping, instead of the

left grouping above)

using the AGE connectives. GUU can be used to affix an argument

modifier at this top level.

<p>

argument1 <- (((arg8 freemod? AGE freemod? argument1)/arg8) (GUU

freemod? argmod)*)

<p>

149

possibly negated and case tagged arguments. We (unlike 1989

Loglan) are careful

to use argument only where case tags are appropriate.

<p>

argument <- ((NOWORD freemod?)* (DIO freemod?)* argument1)

<p>

an argument which is actually case tagged.

<p>

argxx <- (&((NOWORD freemod?)* DIO) argument)

<p>

<H3>Term lists</H3>

arguments and predicate modifiers actually associated with

predicates.

<p>

term <- (argument/modifier)

<p>

a term list consisting entirely of modifiers.

<p>

modifiers <- (modifier (freemod? modifier)*)

<p>

a term list consisting entirely of modifiers and tagged

arguments.

150

<p>

modifiersx <- ((modifier/argxx) (freemod? (modifier/argxx))*)

<p>

the subject class is a list of terms (arguments and predicate

modifiers) in which all but possibly one

of the arguments are tagged, and there is at least one argument

, tagged or otherwise.

<p>

subject <- ((modifiers freemod?)? ((argxx subject)/(argument (

modifiersx freemod?)?)))

<p>

these classes are exactly argument, but are used to signal

which argument position after the predicate an argument

occupies.

I think the grammar is set up so that these will actually

never be case tagged, though the grammar does not expressly

forbid it.

<p>

argumentA <- argument

<p>

argumentB <- argument

<p>

151

argumentC <- argument

<p>

 argumentC <- argument

<p>

argumentD <- argument

<p>

for argument lists not guarded against absorbing a following

subject (now redundant)

<p>

argumentA1 <- argument

<p>

argumentB1 <- argument

<p>

argumentC1 <- argument

<p>

argumentD1 <- argument

<p>

a general term list. It cannot contain more than four untagged

arguments (they will be labelled

with the lettered subclasses given above).

<p>

152

terms <- ((modifiersx? argumentA (freemod? modifiersx)? argumentB?

(freemod? modifiersx)? argumentC? (freemod? modifiersx)?

argumentD?)/modifiersx)

<p>

terms list not guarded against absorbing a following subject (

now the same as terms)

<p>

terms1 <- ((modifiersx? argumentA1 (freemod? modifiersx)?

argumentB1? (freemod? modifiersx)? argumentC1? (freemod?

modifiersx)? argumentD1?)/modifiersx)

<p>

innards of ordered and unordered list constructions. These are

something I totally rebuilt, as they were in a totally

unsatisfactory state in trial.85. Note the use of comma words

to separate items in lists.

<p>

word <- (arg1a/indef2)

<p>

words1 <- (word (ZEIA? word)*)

<p>

words2 <- (word (ZEIO? word)*)

<p>

wordset1 <- (words1? LUA)

<p>

153

wordset2 <- (words2? LUO)

<p>

the full term set type to be affixed to predicates.

<p>

forethought connection of term lists

<p>

termset1 <- (terms/(KA freemod? termset2 freemod? guu? KI freemod?

termset1))

<p>

afterthought connection of term lists. There are cunning things

going on here getting [guu]

to work correctly. Note that [guu] is NOT a null term list as

it was in trial.85.

<p>

termset2 <- (termset1 (guu &AONE)? (AONE freemod? termset1 (guu &

AONE)?)*)

<p>

there is an interesting option here of a list of terms followed

by [go] followed by a predicate

intended to metaphorically modify the predicate to which the

terms are affixed. Is there a reason

why we cannot have a more complex construction in place of

terms?

154

<p>

termset <- ((terms freemod? GO freemod? barepred)/termset2)

<p>

<H3>The general verb phrase construction</H3>

this is the untensed predicate with arguments attached. Here is

the principal locus

of closure with [guu], but it is deceptive to say that [guu]

merely closes barepred,

as we have seen above, for example in [termset2].

<p>

barepred <- (sentpred freemod? ((termset guu?)/(guu &termset))?)

<p>

tensed predicates

<p>

markpred <- (TENSE freemod? barepred)

<p>

there follows an area in which my grammar looks different from

trial.85. Distinct parallel forms for

marked and unmarked predicates are demonstrably not needed even

in trial.85. The behavior of the ACI

connectives is plain weird in trial.85; here we treat ACI

connectives in the same way as A connectives, but

binding more tightly.

155

<p>

units for the ACI construction following -- possibly multiply

negated bare or marked predicates.

<p>

adding shared termsets to logically connected predicates are

handled differently here than in trial.85,

which uses a very elegant but dreadfully left-grouping rule

which a PEG cannot handle. Any realistic situation

should be manageable.

<p>

backpred1 <- ((neg2 freemod?)* (barepred/markpred))

<p>

ACI connected predicates. Shared termsets are added. Notice how

we first group backpred1’s then recursively

group backpreds.

<p>

backpred <- (((backpred1 (ACI freemod? backpred1)+ freemod? ((

termset guu?)/(guu &termset))?) ((ACI freemod? backpred)+

freemod? ((termset guu?)/(guu &termset))?)?)/backpred1)

<p>

A connected predicates; same comments as just above. Cannot

start with GE to fix ambiguity with AGE connectives.

<p>

156

predicate2 <- (!GE (((backpred (AONE !GE freemod? backpred)+

freemod? ((termset guu?)/(guu &termset))?) ((AONE freemod?

predicate2)+ freemod? ((termset guu?)/(guu &termset))?)?)/

backpred))

<p>

predicate2’s linked with right grouping AGE connectives (A and

ACI are left grouping).

<p>

predicate1 <- ((predicate2 AGE freemod? predicate1)/predicate2)

<p>

identity predicates from above, possibly negated

<p>

identpred <- ((NOWORD freemod?)* (BI freemod? argument1 guu?))

<p>

predicates in general. Note that identity predicates cannot be

logically connected

except by using forethought connection (see above).

<p>

predicate <- (predicate1/identpred)

<p>

<H3>The sentence</H3>

The gasent is a basic form of the Loglan sentence in which the

predicate leads.

157

The basic structure is [PA word (usually a tense) or [ga])

followed optionally by terms followed optionally by

[ga] followed by terms. The list of terms after [ga] (if

present) will either contain

at least one argument and no more than one untagged argument

(a subject) [gasent1] or all the arguments of the predicate [

gasent2]. We deprecate other arrangements possible in

1989 Loglan because they would cause unexpected reorientation

of the arguments already given before [ga] as second

and further arguments were read after [ga]. [barepred] is an

untensed predicate possibly with arguments; [sentpred]

is "simply a verb", i.e., a predicate without arguments.

<p>

there is a semantic change from 1989 Loglan reflected in a

grammar change here:

in [gasent1] the final (ga subject) is optional. When it does

not appear, the resulting

sentence is an observative (a sentence with subject omitted),

not an imperative.

Imperatives for us are unmarked.

<p>

4/22 allowing general predicates in gasent. Otherwise the

spaces of observatives and imperatives become quite confused.

<p>

158

gasent1 <- ((NOWORD freemod?)* (freemod? &markpred predicate (GATWO

freemod? subject)?))

<p>

gasent2 <- ((NOWORD freemod?)* (TENSE freemod? sentpred modifiers?

(GATWO freemod? subject freemod? GIO? freemod? terms?)))

<p>

gasent <- (gasent2/gasent1)

<p>

this is the simple Loglan sentence in various basic orders. The

form "gasent" is discoussed just above.

Predicate modifiers

can be prefixed to the gasent. The final form given here is the

basic SVO sentence. The "subject" class is a list of terms

#(arguments and predicate modifiers) containing at most one un-case

-tagged argument. The most general SVO form is subject, followed

optionally

#by [gio] followed by a list of terms (1989 Loglan allowed more

than one untagged argument before the predicate, but this leads

to practical problems

#in which preceding constructions with errors in them may supply

extra unintended arguments. It should be noted in NB3 that JCB

envisioned

#a single argument before the predicate, followed by the predicate,

which may itself contain further arguments. A gasent nay

optionally be negated

#(even multiple times).

159

<p>

re [gio] and some other changes, in his comments on the NB3

grammar JCB often notes restrictions on appearances of term

lists which he

intends but which he thought were hard to implement in the

machine grammar. The appearance of just one argument before the

"verb"

in an SVO sentence was one of these (though later he takes it

as a virtue that the actual machine grammar supports SOV: we did

not

consider it a virtue to have unmarked SOV after observing

unintended parses appearing in the Visit text). Another example

of this

(which would not have been hard for JCB to implement, in fact)

is our restriction of the form "terms gasent" to "modifiers

gasent".

His comments make it clear that he does not want arguments

among those terms.

<p>

statement <- (gasent/(modifiers freemod? gasent)/(subject freemod

? freemod? (GIO freemod? terms1)? predicate))

<p>

statement <- (gasent/(modifiers freemod? gasent)/(subject freemod?

freemod? (GIO freemod? terms1)? predicate))

<p>

this is a forethought connected basic sentence. It is odd (and

actual odd results can be exhibited) that the final segment in

both

160

of these rules is of the very general class uttA1, which

includes some quite fragmentary utterances usually intended as

answers.

<p>

12/20/2017 I rewrote the rule in a more compact form. This rule

looks ahead to the class [sentence] which we now develop;

for the moment notice that [sentence] will include [statement].

<p>

4/14 tentatively allowing initial modifiers here and leaving

this out of uttA0 which replaces uttA1 below.

The intention is to eliminate weird sentence fragments.

<p>

 this is where I could reinstall permission to use headterms

without [goi] before keksents. I do not think I want to.

 I have done this experimentally.

<p>

keksent <- (terms? freemod? (NOWORD freemod?)* (KA freemod?

headterms? freemod? sentence freemod? KI freemod? sen1))

<p>

cloned if not marked as imperative

<p>

keksentclone <- (terms? freemod? (NOWORD freemod?)* (KA freemod?

headterms? freemod? sentenceclone freemod? KI freemod? sen1clone

))

161

<p>

sentence negation. We allow this to be set off from the main

sentence with a mere pause, because generally

it does not differ in meaning from the result of negating the

first argument or predicate modifier.

<p>

neghead <- ((NOWORD freemod? gap)/(neg2 OptPause))

<p>

this class includes [statement], predicate modifiers preceding

a predicate (which may contain arguments), a statement,

a predicate, and a keksent. Of these, the first and third are

imperatives.

<p>

4/23/2019 added actual rule for imperative sentences. This

should not

affect the parse in any essential way.

<p>

imperative <- ((modifiers freemod?)? !gasent predicate)

<p>

 clone of imperative for labelling which occurrences are

actually imperative

<p>

nosubject <- ((modifiers freemod?)? !gasent predicate)

162

<p>

headterms <- (terms GI freemod?)+

[headterms] is a list of terms (arguments and predicate

modifiers) ending in [gi]. Preceding a [sen1] with these

causes all predicates in the [sen1] to share these arguments.

We propose either that the headterms arguments be directly

appended to the argument list of each component of the [sen1],

or that there is an argument with a numbered case tag at the

beginning

of the headterms list, and the list is inserted at the

appropriate position in each component sentence. Neither of

these is

the condition described in Loglan I, which presupposes that we

always know what the last argument of each predicate used is.

<p>

<p>

this is the sentence class below prefixed with a list of

fronted terms.

we think the [giuo] closure might prove useful.

<p>

uttAx <- (headterms freemod? sentence giuo?)

<p>

 cloned if not to be marked as imperative

<p>

163

uttAxclone <- (headterms freemod? sentenceclone giuo?)

sen1 <- ((neghead freemod?)* (imperative/statement/keksent/uttAx))

<p>

 clone of sen1 with nosubject instead of imperative

<p>

sen1clone <- ((neghead freemod?)* (nosubject/statement/keksentclone

/uttAxclone))

<p>

the class [sentence] consists of sen1’s afterthought connected

with A connectives

 The logical structure of a [sentence] may not be transparent.

The effect of appending another {ICA sen1) to a [sentence] is to

connect the previous part of the sentence to the new [sen1]

with the ICA connective. In other words, this groups to the left

, logically.

 Classes [sentence] and [uttAx] play an important role in my

proposed definition of scope: the scope of a quantifier is the

smallest item of one of these classes

which includes all instances of the variable it binds and all

scopes of quantifiers which appear after it in its scope (in the

peculiar SOV order we use). Notice

that an initial segment of a [sentence] is not a [sentence]:

scopes are to be closed under ICA connectives.

<p>

 adding another layer to sentences, afterthought connected with

ICI connectives, more tightly binding (and removing class uttD

below)

sentence1 <- (sen1 (ICI freemod? sen1)*)

164

<p>

sentence1clone <- (sen1clone (ICI freemod? sen1clone)*)

<p>

 a sentence will continue through terminal punctuation; this

averts ambiguity with the higher level utterance construction

with ICA.

<p>

sentence <- (sentence1 ([!.:;?]? ICA freemod? sentence1)*)

<p>

sentenceclone <- (sentence1clone ([!.:;?]? ICA freemod?

sentence1clone)*)

<p>

<H3>Utterances</H3>

weird answer fragments

<p>

uttA <- ((AONE/mex) freemod?)

<p>

a broad class of utterances, including various things one would

usually only say as answers. Notice

that this utterance class can take terminal punctuation.

<p>

165

uttA1 <- ((links/linkargs/argmod/terms/uttA/NOWORD) freemod? Period

?)

<p>

possibly negated utterances of the previous class.

<p>

uttC <- (sentence Period?/(neghead freemod? uttC)/uttA1)

<p>

 Higher level utterance construction with ICA connectives

eliminated.

<p>

ICAUTT <- ICA

<p>

uttE <- (uttC (ICAUTT freemod? uttC)*)

<p>

utterances of the previous class linked with I sentence

connectives.

<p>

uttF <- (uttC (I freemod? uttC)*)

<p>

the utterance class for use in the context of parenthetical

freemods or quotations, in which it does not go to end of text.

<p>

166

utterance0 <- (!GE ((ICAUTT freemod? uttF)/(!OptPause freemod

Period? utterance0)/(!OptPause freemod Period?)/(uttF IGE

utterance0)/uttF/(I freemod? uttF?)/(I freemod? Period?)) (&I

utterance0)?)

<p>

Notice that there are two passes here: the parser first checks

that the entire utterance

is phonetically valid, then returns and checks for grammatical

validity.

<p>

the full utterance class. This goes to end of text, and

incorporates the phonetics check. This incorporates the only

situations

in which a freemod is initial. The IGE connectives bind even

more loosely than the I connectives and right-group instead of

left grouping.

<p>

utterance <- (&(PhoneticUtterance End) (!GE ((ICAUTT freemod? uttF

(&I utterance)? End)/(!OptPause freemod Period? utterance)/(!

OptPause freemod Period? (&I utterance)? End)/(uttF IGE

utterance)/(I freemod? Period? (&I utterance)? End)/(uttF (&I

utterance)? End)/(I freemod? uttF (&I utterance)? End))))

</TT>

167

